\qquad

Question 1. ${ }^{1}$ The Silly Nut Company makes two mixtures of nuts: Mixture A and Mixture B. A pound of Mixture A contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $\$ 4$. A pound of Mixture B contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $\$ 5$. The company has 1080 lb . of peanuts, 240 lb . of almonds, 160 lb . of cashews. How many pounds of each of mixtures A and B should the company make to maximize profit? (Hint: Use consistent units. Work the entire problem in pounds by converting all values given in ounces into fractions of pounds, $1 \mathrm{lb}=16 \mathrm{oz}$).
a. (1 mark) Determine the objective function.
b. (3 marks) Find the constraints that define the feasible region.

Questions 2. ${ }^{2}$ (4 marks) Consider the objective function $Z=4 x+3 y$ subject to the following constraints:

$$
\left\{\begin{aligned}
x+y & \geq 1 \\
x+2 y & \leq 4 \\
2 x+y & \leq 4 \\
x & \geq 0 \\
y & \geq 0
\end{aligned}\right.
$$

If the vertices (corners) of the feasible region are $(1,0),(2,0),(0,2),(0,1),(4 / 3,4 / 3)$. Find the maximum and minimum values of Z and at what (x, y) point they are reached. And justify!

[^0]Questions 3. ${ }^{3}$ Sketch the feasible region given by the inequalities below. And also find the feasible region vertices (coners). Show your work!
$\left\{\begin{aligned} & x+y \geq 3 \\ & 3 x+4 y \leq 24 \\ & 4 x+3 y \leq 24 \\ & x \geq 0 \\ & y \geq 0\end{aligned}\right.$
${ }^{3}$ modified from WeBWorK

[^0]: ${ }^{1}$ From https://math.libretexts.org/Bookshelves/Applied_Mathematics/Applied_Finite_Mathematics_(Sekhon_and_Bloom)
 ${ }^{2}$ modified from WeBWorK

