Question 1. (5 marks) The VECTOR Company compiles two project (Firecat (X) and Thunderfish (Y)) using two machines (A and B). Each compilation of Firecat requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each compilation of Thunderfish that is compiled requires 24 minutes processing time on machine A and 33 minutes processing time on machine B. Available processing time for the week on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours. Company policy is to maximise the combined sum of the compilations of Firecat and Thunderfishs by the end of the week. name: Y. Lamontagne a. (1 mark) Determine the objective function. b. (3 marks) Find the constraints that define the feasible region. $$50 \times + 24 \times \leq 40(60)$$ $30 \times + 33 \times \leq 35(60)$ Questions 2. (4 marks) Consider the objective function Z = 4x + 3y subject to the following constraints: $$\begin{cases} x+y \ge 1 \\ x+2y \le 4 \\ 2x+y \le 4 \\ x \ge 0 \\ y \ge 0 \end{cases}$$ If the vertices (corners) of the feasible region are (1,0), (2,0), (0,2), (0,1), (4/3,4/3). Find the maximum and minimum values of Z and at what (x,y) point they are reached. And justify! 0. Minimum 15 3 when x=0 andy=1 Maximum 15 25 when x=y=4/3 The above conclusion is true since linear objective function are optimized at the vertices (corners) of bounded feasible regions. To find C, lets determine the intersection between 3x+4y = 24 and 4x+3y = 24 $$\begin{bmatrix} 3 & 4 & 24 \\ 4 & 3 & 24 \end{bmatrix} \sim 3R_2 \rightarrow R_2 \begin{bmatrix} 3 & 4 & 24 \\ 12 & 9 & 72 \end{bmatrix}$$ $$\sim -4R_1 + R_2 \rightarrow R_2 \begin{bmatrix} 3 & 4 & 24 \\ 0 & -7 & -24 \end{bmatrix}$$ $$\sim 7R_1 \rightarrow R_1 \begin{bmatrix} 21 & 28 & 168 \\ 0 & -7 & -24 \end{bmatrix}$$ $$\sim 4R_2 + R_1 \rightarrow R_1 \begin{bmatrix} 21 & 0 & 72 \\ 0 & -7 & -24 \end{bmatrix}$$ $$\sim \frac{1}{2}R_1 \rightarrow R_2 \begin{bmatrix} 1 & 0 & 24/7 \\ 0 & 1 & 24/7 \end{bmatrix}$$ $$\sim C(\frac{24}{7}, \frac{24}{7})$$