Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (10 marks) Use the simplex method to solve the linear programming problem: Maximize the objective function: $\mathbf{Z} = 5x_1 + 2x_2 + 8x_3$ subject to

$$\begin{cases} 2x_1 - 4x_2 + x_3 \le 42 & 2x_1 - 4x_2 + x_3 + 5, & 342 \\ 2x_1 + 3x_2 - x_3 \le 42 & 2x_1 + 3x_2 - x_3 + 5, & 342 \\ 6x_1 - x_2 + 3x_3 \le 42 & 6x_1 - x_2 + 3x_3 + 5, & 342 \\ \text{riables and slack variables.} \end{cases}$$

Explicitly write the final value of the objective function, variables and slack variables.

Explicitly write the final value of the objective function, variables and slack variables.								
	write the final $x1$ $ \begin{array}{c} x1 \\ 2 \\ 6 \\ -5 \\ x1 \\ 2 \\ 2 \end{array} $	x2 -4 3 -1	x3 1 -1 38	s1 1 0 0	s2 0 1 0	s3 0 0 1	Z 0 0 0 1	42 42 42 73 = 42/3 = 14 e-pivot row
₹6° -> 6 3	x1 2 2 2 2	x2 -4 3 -1/3	x3 pivot 1 -1 1 -8	51 1 0 0	s2 0 1 0	s3 0 0 1/3	Z 0 0 0	42 42 14 0
R5+R1→R1 R3+R2→R2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x2 -11/3 8/3 -1/3 -14/3	x3 0 0 1	s1 1 0 0	s2 0 1 0	s3 -1/3 1/3 1/3 8/3	Z 0 0 0 0	28 56 14 112 - pivot row
3R3+R4-)R4 3R2-)R2	x1 0 3/2 2 11	x24 -11/3 P 1 -1/3 -14/3	• XX ³ cel 0 1 0	s1 1 0 0	s2 0 3/8 0	s3 -1/3 1/8 1/3 8/3	Z 0 0 0 1	28 21 14 112
Y, Rz + R, → R, 	x1 11/2 3/2 5/2 18	x2 0 1 0 0	x3 0 0 1 0	s1 1 0 0	s2 11/8 3/8 1/8 7/4	s3 1/8 1/8 3/8 13/4	Z 0 0 0 1	105 21 21 210
-								

$$7R_{1}$$
 $0 \quad X_{1} = 0$
 $X_{2} = 21$
 $X_{3} = 21$
 $X_{4} = 105$
 $X_{5} = 0$
 $X_{5} = 0$

Bonus Question. (2 marks) The barber is the "one who shaves all those, and those only, who do not shave themselves". The question is, does the barber shave himself?