name: Y. Lamontagne

Question 1. (2 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

The sum of two invertible matrices of the same size must be invertible.

False, Let
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, both are invertible matrices since and-be=1±0.

But $A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ which is not invertible.

Question 2. (3 marks) Show that if a square matrix A satisfies the equation $A^2 + 2A + I = 0$, then A must be invertible. What is the inverse?

We are given
$$A^2+2A+I=0$$

$$I=-A^2-2A$$
which implies $I=A(-A-2I)$ and $I=(-A-2I)A$
of A is invertible and $A^{-1}=-A-2I$

Question 3. (5 marks) Solve for X given that it satisfies

$$\left(2A + X^T\right)^{-1} = I$$

where

$$A = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$

$$((2A + X^{T})^{-1})^{-1} = J^{-1}$$

$$2A + X^{T} = J$$

$$X^{T} = J^{-1}$$

$$X^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$$

$$X^{T} = \begin{bmatrix} -1 & -6 \\ -2 & -3 \end{bmatrix}$$

$$X = \begin{bmatrix} -1 & -2 \\ -6 & -3 \end{bmatrix}$$