Question 1. Let $A=(0,-2,4), B=(5,-5,3)$, and $P=(k, k, k)$.
a. (4 marks) Find k when the vector from A to B is perpendicular to the vector from A to P.
b. (4 marks) Find a vector of length 3 oppositely directed to $\overrightarrow{A B}$.
a) $\overrightarrow{A B}=\vec{B} \cdot \underline{A}=(5,-5,3)-(0,-2,4)=(5,-3,-1)$

$$
A \vec{P}=\bar{P} \cdot \vec{A}=(k, k, k)-(0,-2,4)=(k, k+2, k-4)
$$

$$
0=\overrightarrow{A B} \cdot A \vec{P}
$$

$$
0=(5,-3,-1) \cdot(k, k+2, k-4)
$$

$$
0=5(k)+(-3)(k+2)+(-1)(k-4)
$$

$$
0=5 k-3 k-6-k+4
$$

$$
2=k
$$

b) $\frac{-3}{\|A \vec{A}\|} \overrightarrow{A B}=\frac{-3}{\sqrt{5^{2}+(-1)^{2}+(-1)^{2}}}(5,-3,-1)=\frac{-3}{\sqrt{35}}(5,-3,-1)$

Question 2.(4 marks) Let $\|\vec{u}\|=3$, \vec{v} be a unit vector, and the angle between \vec{u} and \vec{v} be 60 degrees. Find $\|5 \vec{u}-7 \vec{v}\|$

$$
\begin{aligned}
\|5 \underline{u}-7 \underline{v}\|^{2} & =(5 \underline{u} \cdot 7 \underline{v}) \cdot(5 \underline{u}-7 \underline{v}) \\
& =(5 \underline{u}) \cdot(5 \underline{u})+(5 \underline{u}) \cdot(-7 \underline{v})+(-7 \underline{v}) \cdot(5 \underline{u})+(-7 \underline{v}) \cdot(-7 \underline{v}) \\
& =25 \underline{u} \cdot \underline{u}-35 \underline{u} \cdot \underline{v}-35 \underline{u} \cdot \underline{\underline{u}}+49 \underline{v} \cdot \underline{v} \\
& =25\|\underline{u}\|^{2}-70 \underline{u} \cdot \underline{v}+49\|\underline{v}\|^{2} \\
& =25(3)^{2}-70\|\underline{u}\|\|\underline{v}\| \cos 60^{6}+49(1)^{2} \\
& =25(9)+49-70(3)(1) \cos 10^{\circ} \\
& =274-210\left(\frac{1}{2}\right) \\
& =169
\end{aligned}
$$

$\|5 u-7 x\|=13$

