Question 1. (5 marks) Given the non-intersecting lines:

$$
\begin{aligned}
& \mathscr{L}_{1}: \quad(x, y, z)=\overbrace{(1,2,-2)}^{\overbrace{1}}+\overbrace{1}(1,2,1) \\
& \mathscr{L}_{2}:(x, y, z)=\underbrace{(2,1,3}_{\rho_{2}})+t_{2}(\underbrace{1,2,3}_{\boldsymbol{d}_{2}}) \text { where } t_{1}, t_{2} \in \mathbb{R} .
\end{aligned}
$$

Find the shortest distance between \mathscr{L}_{1} and \mathscr{L}_{2}.
since $\mathcal{L}_{1} H d_{2}$ and \mathcal{L}_{1} and \mathcal{L}_{2} are non-intersecting then \mathcal{L}_{1} and \mathscr{L}_{2} are skew-lines.

$$
\begin{aligned}
& P_{1}^{\prime} P_{2}=P_{2}-P_{1} \\
& =(2,1,3)-(1,2,-2) \\
& =(1,-1,5) \\
& a=\underset{1}{d_{1}} \times \underset{1}{d_{2}}=\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\left|,-\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|,\left|\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right|\right)=(4,-2,0)\right. \\
& \operatorname{proj}_{\underline{n}}{ }_{\underline{p_{1}} \dot{P}_{2}}=\frac{n \cdot p_{1} \dot{P}_{2}}{\underline{n} \cdot \underline{n}} \\
& =\frac{(4,-2,0) \cdot(1,-1,5)}{(4,-2,0) \cdot(4,-2,0)}(4,-2,0) \\
& =\frac{4(1)+(-2)(-1)+0(5)}{4(4)+(-2)(-2)+06)}(4,-2,0) \\
& =\frac{6}{20}(4,-2,0) \\
& =\frac{3}{10}(4,-2,0) \\
& =\frac{3}{5}(2,-1,0) \\
& \text { distance }=\left\|\rho r o j_{\underline{n}} P_{1} P_{2}\right\| \\
& =\left\|\frac{3}{5}(2,-1,0)\right\|=\frac{3}{5}\|(2,-1,0)\|=\frac{3}{5} \sqrt{2^{2}+(-1)^{2}+0^{2}}
\end{aligned}
$$

Questions 2. (4 marks) Prove: If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} lie in the same plane, then $(\underbrace{(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})}=\overrightarrow{0}$.
$\begin{aligned} \text { If } \underline{a} \| \underline{b} \text { then } \exists k \text { st. } \underline{b}=k \underline{a} & \Rightarrow \underline{a} \times \underline{\underline{b}}=\underline{a} \times(k \underline{a})=k(\underline{a} \times \underline{a})=k \underline{0}=\underline{0} \\ & \Rightarrow \boldsymbol{s}=\underline{0}\end{aligned}$
similarly if $\varepsilon \| \underline{d}$

$$
\Rightarrow \quad S=0
$$

suppose $a \not H \underset{b}{b}$ and $c \mathbb{X}$ then

since $\underline{n}_{1} \| \underline{n}_{2} \quad \exists k$ sit. $\quad \underline{u}_{2}=k \underline{n}_{1}$

$$
\begin{aligned}
S & =\underline{n}_{1} \times n_{2} \\
& =n_{1} \times\left(k \underline{n}_{1}\right) \\
& =K\left(\underline{n}_{1} \times \underline{n}_{1}\right) \\
& =K \underline{0} \\
& =\underline{0}
\end{aligned}
$$

Questions 3. Given $A(1,2,3), B(0,1,-2)$ and $C(-1,0,5)$
a. (4 marks) Find the area of the triangle $A B C$.

$$
\text { Area }=\frac{\left\|A_{A} \dot{C} \times A B_{B}\right\|}{2}
$$

$$
\overrightarrow{A C}=\underline{C}-\underline{A}=(-1,0,5)-(1,2,3)=(-2,-2,2)
$$

$$
A \vec{B}=\underline{B}-\mathbb{A}=(0,1,-2)-(1,2,3)=(-1,-1,-5)
$$

$$
\vec{A} \vec{C} \times \overrightarrow{A B}=\left(\begin{array} { c c }
{ - 2 } & { - 1 } \\
{ 2 } & { - 5 }
\end{array} \left|-\left|-\left|\begin{array}{l}
-2 \\
2-5
\end{array}\right|\right.\right.\right.
$$

$$
\begin{array}{cc}
-2 & -1 \\
-2 & -1 \\
-2 & -5
\end{array}=(12,-12,0)
$$

$$
\begin{aligned}
\text { Area }=\frac{\|(12,-12,0)\|}{2}=\frac{\sqrt{12^{2}+(-12)^{2}+0^{2}}}{2} & =\frac{\sqrt{288}}{2} \\
& =\sqrt{72} \\
& =6 \sqrt{2}
\end{aligned}
$$

b. (3 marks) Find the general and parametric equation of the plane that contains the points A, B and C.

parametric equ: $\begin{aligned} \underline{x} & =A+5 \vec{A}+A \vec{B} \quad \text { s, } t \in R \\ & =(1,2,3)+5(-2,-2,2)+t(-1,1,-5)\end{aligned}$
general ogn: $\begin{aligned} a x+b y+c z & =d \\ 12 x-12 y & =d\end{aligned}$
sub in A to solve for d

$$
\begin{aligned}
12(1)-12(2) & =d \\
-12 & =d
\end{aligned}
$$

$$
\therefore 12 x-12 y=-12 .
$$

