Dawson College: Linear Algebra (COMPUTER SCIENCE): 201-NYC-05-S9: Fall 2022: Quiz 11

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1. (5 marks) Given the non-intersecting lines:

$$\mathcal{L}_{1} : (x, y, z) = (1, 2, -2) + t_{1}(1, 2, 1) \mathcal{L}_{2} : (x, y, z) = (2, 1, 3) + t_{2}(1, 2, 3)$$
 where $t_{1}, t_{2} \in \mathbb{R}$

Find the shortest distance between \mathcal{L}_1 and \mathcal{L}_2 . Since de Hdz and X, and X_2 are non-intersecting then X, and Z_2 are skew-lines.

Questions 2. (4 marks) Prove: If
$$\vec{a}$$
, \vec{b} , \vec{c} and \vec{d} lie in the same plane, then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{b}$.
If \vec{a} if \vec{b} is \vec{b} , \vec{c} and \vec{c} lie in the same plane, then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{b}$.
If \vec{a} if \vec{b} is \vec{b} is \vec{b} if \vec{c} i

name: <u>V. La montagne</u>

Questions 3. Given A(1,2,3), B(0,1,-2) and C(-1,0,5)

a. (4 marks) Find the area of the triangle ABC.

b. (3 marks) Find the general and parametric equation of the plane that contains the points A, B and C.

parametric eqn:
$$\underline{x} = A + sAc + tAB \quad s, t \in R$$

= $(1, 2, 3) + s(-2, -2, 2) + t(-1, -1, -5)$
general ogn: $ax + by + cz = d$
 $|2x - 12y = cd$
sub in A to solve for d
 $|2(1) - 12(2) = d$
 $-12 = d$