name: Y. Lamantagne

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the wor

Question 1. Consider the function and its derivatives

$$f(x) = \frac{e^x}{x^2}, \ f'(x) = \frac{xe^x - 2e^x}{x^3}, \ f''(x) = \frac{x^2e^x - 4xe^x + 6e^x}{x^4}$$

a. (4 marks) Find the domain, intercepts and asymptotes of f(x) (if they exist).

Domain of f(x): R\ 803

Intercepts: no y-int since f(x) is not defined at x=0 nox-int since ex = 0

Asymptotes: lim f(x)= 00 co vertical asymptote at x=0.

 $\lim_{X\to\infty} f(x) = \lim_{X\to\infty} \frac{e^x}{x^2} \stackrel{\text{if }}{=} \lim_{X\to\infty} \frac{e^x}{2x} \stackrel{\text{if }}{=} \lim_{X\to\infty} \frac{e^x}{2} = \infty$ X-20 $X \to 0$ $X \to 0$

$$0 = f(x)$$

$$0 = \frac{xe^{x} - 2e^{x}}{x^{3}}$$

$$0 = e^{x}(x-2)$$

$$0 = x-2$$

$$x = 2$$

$$critical point at x=2$$

	(-0,0)	(0,2)	(2,00)
test point f'(t.p.) inc./dec.	-1 f'(+1) > 0	t,(!)<0	3 F'(3) > 0

of local min. at x=2
of point of local min. is $(2, f(2)) = (2, \frac{p^2}{2^2}) = (2, 1.8)$

c. (4 marks) Find the intervals where f(x) is concave upward/downward and the points of inflection (if they exist).

$$0 = f''(x)$$

$$0 = \frac{x^{2}e^{x} - 4xe^{x} + 6e^{x}}{x^{3}}$$

$$0 = e^{x}(x^{2} - 4x + 6)$$

$$0 = x^{2} - 4x + 6$$
irreducible since
$$\Delta = (-4)^{2} - 4(1)(6)$$

$$= 16 - 24$$

= -8 < 0

	(-00,0)	(0,00)
test point	-1	1
f''(t.p.)	f"(-1) >0	f"(1) >0
concavity	V	V

no inflection point.

Question 2. (3 marks) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum.

Question 3. (4 marks) The graph of f'(x) is given below, on the interval [0,2] find the intervals of concavity and the x-coordinates of the inflection points of f(x) if any. Justify.

The slope of the tangents of f'(x) is positive on: [0,0.2), (0.8,1.32), (1.68,2) and negative on (0.2,0.8), (1.32,1.68) .

So f''(x) 70 on a and f''(x) < 0 on a confiction points at x = 0.2, 0.8, 1.32, 1.68.

Question 4. (4 marks) Find the absolute maximum and absolute minimum values of $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ on the interval [-2,3].

Lets find the critical points of f(x)

$$f(-2) = 3(-2)^{4} - 4(-2)^{3} - 12(-2)^{2} + 1 = 33$$

$$+(-1) = 3(-1)^{4} - 4(-1)^{3} - 12(-1)^{3} + 1 = -4$$

$$f(0) = 1$$

$$f(2) = 3(2)^{4} - 4(2)^{3} - 12(2)^{2} + 1 = -31$$

$$f(3) = 3(3)^{4} - 4(3)^{3} - 12(3)^{2} + 1 = 28$$

abs. min of -31 at x=-2

