Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S5: Fall 2024: Quiz 1 name: JLAJM_{M.@LL

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531%**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the

statement is true provide a proof of the statement.
a. Consider a system of linear equations with augmented matrix A. If there is more than one solution, A has a row of zeros.

False, [1 1 0] hos w-mavg solobums smce x+y=0 has o sol. sit
which 18 all the /om’h on ot 7ru/b. bal the

avgm ewited matleix  dots nit have o vow of

Z1vos.

b. Multiplying a row of an augmented matrix through by zero is an acceptable elementary row operation.
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Question 2. (3 marks) Find (if possible) conditions on a and b such that the system has no solution, one solution, and infinitely many solutions.
Justify.
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Question 3. (2 marks) Consider the following augmented matrix of a consistent linear system.

. X =%
13 it awgmadid s o b gt ST
2 46

Xy 2x+4y= 4

Find a row which can be removed to the augmented matrix to make a new system with two equations that has infinitely many solutions. Justify.
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Question 4. (2 marks) Illustrate and describe in terms of slope and intercept all relative positions of lines in a consistent linear system consisting
of two lines.
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Question 5. (2 marks) Find the linear equation whose solution set it (x, y, z) = (4, 0, 0) +s(2, 1, 0)+¢(3, 0, 1) where 5, € R.
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