name: <u>Y. Lamontagne</u>

Question 1. (4 marks) Let A be an $n \times n$ matrix such that $A^2 + 2A - 4I_n = 0$. Show that $A - I_n$ is invertible, and find $(A - I_n)^{-1}$ in terms of A and I_n .

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

$$A^{2}+2A-4I=0$$

 $A^{2}+2A-3I=I$
 $(A-I)(A+3I)=I$ also $(A+3I)(A-I)=I$
 $a^{\circ}-A-I$ is invertible and $(A-I)^{-1}=A+3I$

Question 2. (5 marks) Solve for the matrix A in the following equation:

$$\begin{bmatrix} -1 & -1 \\ -2 & 3 \end{bmatrix} \left(\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} + 3(A^{-1})^T \right)^{-1} = A^T$$

$$B \left(C + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$B^T \left(C + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$I \left(c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$I \left(c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$\left((c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$\left((c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$C + 3 \left(A^{-1} \right)^T = (A^T)^T B$$

$$C + 3 \left(A^{-1} \right)^T = (A^T)^T B$$

$$C = (A^{-1})^T (B - 3I) (B - 3I)$$

$$C \left(B - 3I \right)^{-1} = (A^T)^{-1}$$

$$C \left(B - 3I \right)^{-1} = (A^T)^{-1}$$

$$\left(C \left(B - 3I \right)^{-1} = A^T$$

$$\left((B - 3I) C^{-1} = A^T$$

$$\left((B - 3I) C^{-1} = A^T$$

$$A = \left(\frac{1}{1} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \right)^T \begin{bmatrix} -4 & 1 \\ -2 & 0 \end{bmatrix}^T$$

$$= \begin{bmatrix} -4 & -2 \\ -7 & -4 \end{bmatrix}$$

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If A and B are row equivalent matrices, then the linear systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution set.

Jroe, "" Since A and B are row equivalent: A ~ k elem. row op. ~ B. it we perform Gauss Tordan on [BK] ~ L elem. row op. ~ [RIO]. So [A10] ~ Kelem row op. ~ [B10] ~ Letim. row op ~ [R10] a A and B have the same solution set Question 4. (5 marks) If $B = \begin{bmatrix} 4 & -4 & 8 \\ 9 & 6 & -3 \\ 2 & 3 & -2 \end{bmatrix}$ is obtained from the 3 × 3 matrix A using the following elementary row operations: (a) Add $\frac{1}{4}$ of the first row to the 3rd row. I、~ 」R,+R,のR,E, (b) Multiply the 2nd row by $\frac{1}{2}$. In ~ 4 R2 -> R2 E2 (c) Interchange the first and 3rd row. Iz~ RiG R, Eg Find the matrix A and U where A = UB. and we have E.E.E.A = B $(E_3E_3E_3)^{T}E_2E_2E_1A = (E_3E_3E_3)^{T}B_3$ $A = E_{1}^{+}E_{1}^{+}E_{0}^{+}A$ $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 &$ $\begin{array}{c|c} = & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 3 & 0 \\ \hline - Y_{4} & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 2 & 3 & -2 \end{array}$ $= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 4 & -4 & 8 \\ 9 & 6 & -3 \\ 2 & 3 & -2 \end{bmatrix}$ and $V = \begin{bmatrix} 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$