Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S5: Fall 2024: Quiz 4

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

name: ____

Question 1.

a. (3 marks) Determine all s and t such that the given matrix is symmetric

s	2s	st
t	-1	s
t	s^2	s

b. (2 marks) If A and B are invertible symmetric matrices such that A and B commute show that $A^{-1}B^{-1}$ is also invertible and symmetric.

Question 2. (5 marks) Solve for x where

sin r	cosr	1	1	1
$-\cos r$	sin r	$= e^x $	1	e^x
-cosx	SIIIA	1	e^{x}	0

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

Let $A\mathbf{x} = \mathbf{b}$ be any consistent system of linear equations, and let \mathbf{x}_1 be a fixed solution. Then every solution to the system can be written in the form $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_0$, where \mathbf{x}_0 is a solution to $A\mathbf{x} = \mathbf{0}$.

Question 4. (5 marks) Let A be a 3×3 matrix such that $det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2$. Find the following: $\begin{vmatrix} a+b & 3d+3e & g+h \\ 2a-3b & 6d-9e & 2g-3h \\ 2c & 6f & 2i \end{vmatrix}$.

Bonus. (3 marks) Let A and B be $m \times n$ and $n \times m$ matrices, respectively. If m > n, show that AB is not invertible.