Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S5: Fall 2024: Quiz 5

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531+*. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

name: _

Question 1. (5 marks) Let A and B be two 3×3 matrices such that det(A) = 2 and det(B) = -4. Find the following $det(5B^{-1}A + adj(A^{-1}B))$.

Question 2. (5 marks) Given the vertices A(2, -2, 4), B(4, -1, 1), and C(3, -1, 2) of a triangle. Only using vectors find the components of the vector **u** with initial point being the midpoint of the side AB and terminal point being the midpoint of the side AC.

Question 3. (5 marks) Let **u** and **v** be vectors in \mathbb{R}^3 such that $||\mathbf{u}|| = 4$, $||\mathbf{v}|| = \sqrt{3}$ and $\mathbf{u} \cdot \mathbf{v} = -6$. For which values of *t*, if any, is the angle between $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} + t\mathbf{v}$ acute. (An angle θ is said to be *acute* if $0 < \theta < \frac{\pi}{2}$).

Question 4. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If *A* is an $n \times n$ skew-symmetric matrix, such that *n* is odd, then $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions. (A matrix is skew-symmetric if $A^T = -A$.)