Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S6: Fall 2024: Quiz 1 name: 7 Lﬂmﬂ td‘}ﬂﬂ

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531%**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the
statement is true provide a proof of the statement.

a. Consider a system of linear equations with augmented matrix A. If A has a row of zeros, there is more than one solution.
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b. If each equation in a consistent linear system is multiplied through by a constant c, then all solutions to the new system can be obtained by
multiplying solutions from the original system by c.
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Question 2. (3 marks) Find (if possible) conditions on a and b such that the system has no solution, one solution, and infinitely many solutions.
Justify.
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Question 3. (2 marks) Consider the following augmented matrix of a consistent linear system.
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Find a row which can be added to the augmented matrix to make a new system with three equations that has a unique solution. Justify.

14 we add a lwv Ly which 15 wot idwtical o X adX.. Thin
we obtaim  a singls mbtsseclien  bibween Xad L, 2 a

umi’wk 50(1/{’0;0'. L»tt; add é{;: ]:I

y2 7%3
b

s
.!L '3 2 has & VVH‘/./G 50/4/2[70"4.
o |

Question 4. (2 marks) llustrate all relative positions of lines in an inconsistent linear system consisting of three lines.

Pan

é"""—z /__Z_ﬁ% 4/,
—" z’;y y é:/ -

Question 5. (3 marks) Show that a system consisting of exactly one linear equation can have no solution, one solution, or infinitely many
solutions. Give examples.
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