Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S6: Fall 2024: Quiz 3 Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

name: Y. Lamontagne

Question 1. (4 marks) Prove: If the reduced row echelon form of A is I_n , and E is an $n \times n$ elementary matrix, then the system $EA^2A^T\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Question 2. (5 marks) Solve for the matrix A in the following equation:

$$\begin{bmatrix} -1 & -1 \\ -2 & -3 \end{bmatrix} \left(\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} + 3(A^{-1})^T \right)^{-1} = A^T$$

$$B \left(C + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$B^{-1}B \left(C + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$I \left((c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$I \left((c + 3 \left(A^{-1} \right)^T \right)^{-1} = B^T A^T$$

$$\left((c + 3 \left(A^{-1} \right)^T \right)^{-1} = (A^T)^{-1} (B^{-1})^{-1}$$

$$C + 3 \left(A^{-1} \right)^T = (A^T)^T B$$

$$C : (A^{-1})^T B - 3(A^{-1})^T$$

$$C (B^{-3}I)^{-1} = (A^{-1})^T (B^{-3}I)(B^{-3}I)^{-1}$$

$$C (B^{-3}I)^{-1} = (A^T)^{-1}$$

$$\left(C \left(B^{-3}I \right)^{-1} = (A^T)^{-1}$$

$$\left((B^{-3}I) C^{-1} = A^T$$

$$\left((B^{-3}I) C^{-1} = A^T$$

$$A = \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right)^T \begin{bmatrix} -4 \\ -2 \\ -7 \end{array} \right)^T$$

$$= \begin{bmatrix} -4 \\ -7 \\ -7 \end{bmatrix}$$

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

If *A* is an invertible matrix and *B* is row equivalent to *A*, then *B* is also invertible.

Thue,
Since B is row toy walcut to A:
$$B \sim k$$
 elem, row op $\sim A$.
and if we perform Gauss-Jurdan on $A \sim l$ elem, row op $\sim I$ since A is invertible
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op. $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op. $\sim I$
 $\therefore B \sim k$ clean, row op. $\wedge A \sim l$ elem row op. $\sim I$
 $A \sim R$, $\Leftrightarrow R$, $(I \sim 0 \ I)$
 $A \sim R$, $\Leftrightarrow R_1 \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & I & 0 \end{bmatrix}$
 $I_3 \sim R_2 \sim R_1 \in I$.
 $A = E_1 = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E_1 = R$
 $A = E_1 = E_1 = E$