Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531+*. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1.

1

a. (3 marks) Find all symmetric 2×2 matrices A such that $A^2 = 0$.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, for A to be symmetric $A' = A$

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = b = c$$

$$a^{\circ} \circ A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$$

$$A^{2} = AA = \begin{bmatrix} a & b \\ b & d \end{bmatrix} \begin{bmatrix} a & b \\ b & d \end{bmatrix} = \begin{bmatrix} a^{2} + b^{2} & ab + bd \\ ab + bd & b^{2} + d^{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} (1) \alpha^{2} + \beta^{2} = 0 \\ (2) \alpha b + b d = 0 = 7 \ b(\alpha + d) = 0 \ (2)^{4} \\ (3) b^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d^{2} + d^{2} + d^{2} = 0 \\ (3) b^{2} + d^{2} + d$$

b. (2 marks) If A is invertible and skew-symmetric ($A^T = -A$), the same is true of A^{-1}

Since A is invertible then so is
$$A^{-1}$$
 because $AA^{-1}=I=A^{-1}A^{-1}$
For A^{-1} to be skew-symmetric we need to show $(A^{-1})^{T}=-A^{-1}$

$$LHS = (A^{-})^{-1}$$

= $(A^{-})^{-1}$
= $(-A)^{-1}$ since A is skew symmetric
= $-A^{-1}$
= RHS

Question 2. (5 marks) Given the following matrices:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & -2 & 6 \\ 0 & 1 & -3 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix}$$

det(X) given that X satisfies the equation

Find det(X) given that X satisfies the equation

$$(X + BC)^{-1} = A.$$

$$X + BC = A^{-1}$$

$$X = A^{-1} - BC$$

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 4 & 0 & 0 \\ 2 & -3 & 9 \end{bmatrix}$$

$$X = \begin{bmatrix} -1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & 3 - 9 \end{bmatrix}$$
det $(X) = (-1)(1)(-8) = 8$

Question 3. (3 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

Let *A* be an $n \times n$ matrix and *S* is an $n \times n$ invertible matrix. If **x** is a solution to the system $(S^{-1}AS)\mathbf{x} = \mathbf{b}$, then $S\mathbf{x}$ is a solution to the system $A\mathbf{y} = S\mathbf{b}$. , .) , , . 1.1. 1

True, Since X is a solution of
$$(s^{-}AS) \times = b$$
 then it satisfies the system
and we have $S^{-}AS \times = b$
 $5S^{-}AS \times = Sb$
 $ASX = Sb$
 SX is a solution to $Ay = Sb$ since $Ay = ASX$
 $= Sb$ by $*$
 $s \times satisfies$ the system.

Question 4. (5 marks) Find the real numbers x and such that

X= 1

$$0 = \begin{vmatrix} 1 & x & x^{2} & x^{3} \\ x & x^{2} & x^{3} & 1 \\ x^{2} & x^{3} & 1 & x \\ x^{3} & 1 & x & x^{2} \end{vmatrix} = \frac{-xR_{1} + R_{2} - 3R_{2}}{-x^{2}R_{1} + R_{3} - 3R_{3}} \begin{vmatrix} 1 & x & x^{2} & x^{3} \\ 0 & 0 & 1 - x^{4} \\ 0 & 0 & 1 - x^{4} \\ -x^{2}R_{1} + R_{3} - 3R_{4} \end{vmatrix} \begin{vmatrix} 1 & x & x^{2} & x^{3} \\ 0 & 1 - x^{4} & x - x^{5} \\ 0 & 1 - x^{4} & x - x^{5} \\ 0 & 1 - x^{4} & x - x^{5} \\ 0 & 0 & 1 - x^{4} \end{vmatrix}$$
$$0 = -(1 - x^{4})^{3}$$
$$0 = (1 - x^{4})(1 + x^{2})$$
$$\int_{X=1}^{X=1} (1 - x^{2})(1 + x^{2})$$

Bonus. (3 marks) Let A and B be $m \times n$ and $n \times m$ matrices, respectively. If m > n, show that AB is not invertible.