Question 1. (3 marks) Determine whether each statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof.

If $\mathbf{v}_1 = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, then for any nonzero 2 × 2 matrix *A*, the set { $A\mathbf{v}_1, A\mathbf{v}_2$ } is linearly independent.

Question 2. (5 marks) Find a basis and dimension of $W = \text{span} \{x^2 - x + 2, x - 1, -3x^2 + 3x - 6, 8x^2 + 7x + 1\}$.

Question 3. (5 marks) Let $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \mid 2a - b + 3c - d = 0 \right\}$. Find a basis and the dimension of *W*. Find the coordinates vector of $A = \begin{bmatrix} 2 & -1 \\ 1 & 8 \end{bmatrix}$ relative to the basis.

Question 4. (5 marks) Suppose that $U = \text{span}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ where each \mathbf{x}_i is in \mathbb{R}^n . If A is an $m \times n$ matrix and $A\mathbf{x}_i = \mathbf{0}$ for each *i*, show that $A\mathbf{y} = \mathbf{0}$ for every vector \mathbf{y} in U.