DAWSON COLLEGE MATHEMATICS DEPARTMENT FINAL EXAMINATION CALCULUS II 201-NYB-05 (Science) December 13, 2005 14:00-17:00

Student Name:		
D. DUBROVSKY	T. FOX	B. SZCZEPARA

TIME: 3 hours

INSTRUCTIONS:

- Print your name and student I.D. number in the space provided above.
- All questions are to be answered directly on the examination in the provided space.
- Translation and regular dictionaries are permitted.
- Only small, noiseless and non-programmable calculators are permitted.
- This examination consists of 11 questions divided into a total of 20 parts, each part worth 5 marks.

Please ensure that you have a complete examination before starting.

• This exam must be returned intact.

1. Evaluate

(a)
$$\int \frac{\ln x}{x} dx$$
 (b) $\int xe^{3x} dx$
(c) $\int \frac{4x+5}{(x-1)(x+2)^2} dx$ (d) $\int \frac{x^2}{\sqrt{1-x^2}} dx$

- 2. Find the area of the region enclosed by the graphs of $y = x^2 2x$ and y = 2 x.
- 3. Find the volume of the solid obtained when the region bounded by the graphs of y = x and $y = x^2$ is rotated (a) about the x-axis (b) about the y-axis.
- 4. A tank 10 m high is located with its base at ground level. Its shape is formed by revolving the parabola $y = \frac{x^2}{4}$ about the y-axis. It has been filled to a depth of 6 m with oil of mass density ρ . Find the work required to pump all the oil out to a reservoir 3 meters above the top of the tank.

5. Find the length of the graph of
$$f(x) = \frac{4}{5}x^{\frac{5}{4}}$$
 for $0 \le x \le 1$.

6. Find the limit or show it does not exist.

(a)
$$\lim_{x \to 0^+} \frac{e^{2x} - 2x - 1}{\cos x - 1}$$
 (b) $\lim_{x \to \infty} \left(1 - \frac{1}{x^2}\right)^{x^2}$

7. Evaluate the integral or show it diverges.

(a)
$$\int_{0}^{\infty} \frac{dx}{9+x^2}$$
 (b) $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$

8. Find the sum of the series or show it diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n - 5^n}{7^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2n - 3}{3n - 2}$

9. Determine whether each of the following series converges or diverges. Justify your answer by using an appropriate test.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}$$
 (b) $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ (c) $\sum_{n=1}^{\infty} \frac{2n-3}{3n^2-2}$

- 10. Find the McLaurin polynomial of degree 5 for $f(x) = \ln(1+x)$.
- 11. What does the Fundamental Theorem of Calculus say? Why is it important?