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x 3 -1
1. (a) Find the distance from the point (2,0,1) to the line | y [ =] 2 | +¢| 3
z 1 6

(b) Find an equation of the plane passing through the points (1,0, —2), (2,0,—3), and
(3,4,0). State your answer in the form az + by + cz = d.

3 1 1 -2
2. Let v= | —2 |, and consider the vectors vi=| —1 |, vo=| 0|, vg= 3
5 2 1 -5

(a) Find all possible ways of writing v as a linear combination of {vy, v, v3}. In other
words, find all triples (a, b, ¢) that satisfy the equation v = avy + bva + cvs.

(b) Using your answer in (a), express v as a linear combination of v; and vg only.

(c) Using your answer in (a), express v as a linear combination of v; and vg only.

o -1 -2 1
-3 1 5 -1
3. Let A = 5 0 —2 0
6 —1 -8 1

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the null space of A.

4. Suppose that the set of vectors {vy,vs, vs} is a basis for a subspace V in R*.

(a) If wy = vy, wg = vy + v, and wz = vy + va + v3, show that the set of vectors
{w1,wa, w3} is also a basis for V.

(b) If a; = vy + 2vy, as = 3vy — v3, and ag = vy — v + vg, show that the set of
vectors {aj, az,as} is not a basis for V.

5. Let T : R? — R? be the reflection in the line 2z + 3y = 0.

(a) Find the standard matrix A of the transformation 7'
(b) Use geometric reasoning to find the eigenvalues and eigenvectors of A.

(c) Verify by direct computation that the answers in (b) are indeed correct.
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6. In each of the following, determine whether the given matrix is diagonalizable, and justify
your answers:

12 2 110
(@) A=|{0 11|, (M B=|020
00 2 021

7. Let A be a 2 x 2 matrix such that l 1 ] is an eigenvector with eigenvalue 3, and [ _11 ]

is an eigenvector with eigenvalue 2.

(a) Find a matrix A satisfying all of the given conditions. State your final answer in the

om 1=~ -],

(b) Find a formula for A", valid for all positive integers n. State your final answer in the

formA”z[_ _].

(c) Using the formula for A™ found in (b), compute det(A"). Then compute det(A™)
using an alternate method. Do your results agree ?

0 1 -1
8. Letv= |5 |, and W = span -1, 1
4 2 1

(a) Find the orthogonal projection of v onto W.
(b) Find the component of v orthogonal to W.

1 1 —1
9. Let A = 1 1
-1 1 1

(a) Find the eigenvalues and eigenvectors of A. Hint: One of the eigenvalues has algebraic
multiplicity 2.

(b) Find an orthogonal matrix P and constants c;, cs, and c3 such that the change of
variables X = PY changes the quadratic form X7 AX into the form ¢;y?+coys+c3y3.
(Here X = [11,T9,23]T and Y = [y1, 92, y3)T.)
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