Final Examination 6 December 2004 MATH 133

- 1. (a) Find the distance from the point (2,0,1) to the line $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + t \begin{bmatrix} -1 \\ 3 \\ 6 \end{bmatrix}$.
 - (b) Find an equation of the plane passing through the points (1, 0, -2), (2, 0, -3), and (3, 4, 0). State your answer in the form ax + by + cz = d.

2. Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}$$
, and consider the vectors $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} -2 \\ 3 \\ -5 \end{bmatrix}$.

- (a) Find all possible ways of writing \mathbf{v} as a linear combination of $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$. In other words, find all triples (a, b, c) that satisfy the equation $\mathbf{v} = a\mathbf{v_1} + b\mathbf{v_2} + c\mathbf{v_3}$.
- (b) Using your answer in (a), express ${\bf v}$ as a linear combination of ${\bf v_1}$ and ${\bf v_2}$ only.
- (c) Using your answer in (a), express \mathbf{v} as a linear combination of $\mathbf{v_1}$ and $\mathbf{v_3}$ only.

3. Let
$$A = \begin{bmatrix} 0 & -1 & -2 & 1 \\ -3 & 1 & 5 & -1 \\ 2 & 0 & -2 & 0 \\ 6 & -1 & -8 & 1 \end{bmatrix}$$
.

- (a) Find a basis for the row space of A.
- (b) Find a basis for the column space of A.
- (c) Find a basis for the null space of A.
- 4. Suppose that the set of vectors $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is a basis for a subspace V in \mathbb{R}^4 .
 - (a) If $\mathbf{w_1} = \mathbf{v_1}$, $\mathbf{w_2} = \mathbf{v_1} + \mathbf{v_2}$, and $\mathbf{w_3} = \mathbf{v_1} + \mathbf{v_2} + \mathbf{v_3}$, show that the set of vectors $\{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\}$ is also a basis for V.
 - (b) If $\mathbf{a_1} = \mathbf{v_1} + 2\mathbf{v_2}$, $\mathbf{a_2} = 3\mathbf{v_2} \mathbf{v_3}$, and $\mathbf{a_3} = \mathbf{v_1} \mathbf{v_2} + \mathbf{v_3}$, show that the set of vectors $\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}\}$ is **not** a basis for V.
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection in the line 2x + 3y = 0.
 - (a) Find the standard matrix A of the transformation T.
 - (b) Use geometric reasoning to find the eigenvalues and eigenvectors of A.
 - (c) Verify by direct computation that the answers in (b) are indeed correct.

more questions on next page ...

Final Examination 6 December 2004 MATH 133

6. In each of the following, determine whether the given matrix is diagonalizable, and justify your answers:

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
, (b) $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$.

- 7. Let A be a 2 x 2 matrix such that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue 3, and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is an eigenvector with eigenvalue 2.
 - (a) Find a matrix A satisfying all of the given conditions. State your final answer in the form $A = \begin{bmatrix} & \\ & \end{bmatrix}$.
 - (b) Find a formula for A^n , valid for all positive integers n. State your final answer in the form $A^n = \begin{bmatrix} & \\ & \end{bmatrix}$.
 - (c) Using the formula for A^n found in (b), compute $\det(A^n)$. Then compute $\det(A^n)$ using an alternate method. Do your results agree?

8. Let
$$\mathbf{v} = \begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix}$$
, and $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

- (a) Find the orthogonal projection of \mathbf{v} onto W.
- (b) Find the component of \mathbf{v} orthogonal to W.

9. Let
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
.

- (a) Find the eigenvalues and eigenvectors of A. Hint: One of the eigenvalues has algebraic multiplicity 2.
- (b) Find an **orthogonal** matrix P and constants c_1, c_2 , and c_3 such that the change of variables X = PY changes the quadratic form X^TAX into the form $c_1y_1^2 + c_2y_2^2 + c_3y_3^2$. (Here $X = [x_1, x_2, x_3]^T$ and $Y = [y_1, y_2, y_3]^T$.)

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 133

Vectors, Matrices, and Geometry

Examiner: Prof. I. Klemes

Associate Examiner: Prof. D. Serbin

Date: Monday, 6 December, 2004

Time: 2pm - 5pm

INSTRUCTIONS

Show all necessary steps and details in your work.

Simplify your final answers as far as possible.

There are 9 questions, each worth 10 points.

Answer all questions in the examination booklets.

Calculators are not permitted.

This is a closed book examination.

Keep this exam paper when finished.

This exam comprises the cover and 2 pages of questions.