LAST NAME:	SOLUTIONS
FIRST NAME:	
STUDENT NUMBER:	

QUIZ 1 (B)

DAWSON COLLEGE

201-NYC-05 - Linear Algebra

Instructor: E. Richer Date: June 12th 2008

Question 1. (5 marks)

Determine which of the following matrices are in row echelon form, or in reduced row echelon form:

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The following matrix (matrices) is (are) in row echelon form: B C E

The following matrix (matrices) is (are) in reduced row echelon form: B

Question 2. (5 marks)

Find the solution set of the linear equation 2x - 2y + 3z = 4

Let
$$y=s$$

 $z=t$
 $2x=4+2y-3z$
 $2x=4+2s-3t$
 $x=2+s-3t$

THE SOLUTION SET IS
$$(\chi, y, z) = (z+s-3/2t, s, t) \quad s, t \in \mathbb{R}$$

Question 3. (5 marks)

Find the solution set of the system of linear equations whose augmented matrix is given below in row echelon form.

$$\left[\begin{array}{cccc} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 \end{array}\right]$$

$$\frac{1}{3} = -2$$
 $\frac{1}{3} = -2$
 $\frac{1}{3} = -2$
 $\frac{1}{3} = -2$
 $\frac{1}{3} = -2$
 $\frac{1}{3} = -2$

$$\chi_1 = 3 - 2\chi_3$$

= 3 - 2(-2)
= 7

THE SOLUTION Set is
$$(X_1, X_2, X_3) = (7, -2, -2)$$

Question 4. (5 marks)

Find the solution set of the following system of linear equations.

$$x_1 - 2x_3 - x_4 = 0$$

$$x_3 + 3x_4 = 0$$

AUGMENTED MATRIX

$$\begin{bmatrix} 1 & 0 & -2 & -1 & 0 \\ 0 & 0 & 1 & 3 & 0 \end{bmatrix}$$

Free variables 1 X2 & X4

$$X_3 + 3X_4 = 0$$

 $X_3 = -3X_4$

$$\chi_1 - 2\chi_3 - \chi_4 = 0$$

SOLUTION SET IS

