LAST NAME:	SOLUTIONS
FIRST NAME:	
STUDENT NUMBER:	

TEST 3 (A)

DAWSON COLLEGE

201-NYC-05 Linear Algebra

Instructor: E. Richer Date: July 17th 2008

Question 1. (10 marks)

(a) Find a vector that is orthogonal to both $\vec{u} = (3, 2, -1)$ and $\vec{v} = (1, -1, -1)$.

(b) Find the area of the parallelogram defined by \vec{u} and \vec{v} .

$$(\alpha) \quad \overrightarrow{\cup} \times \overrightarrow{\vee} = \overline{\left(-3, 2, -5\right)}$$

$$\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

(b) Area =
$$\| \vec{U} \times \vec{V} \|$$

= $\sqrt{(-3)^2 + 2^2 + (-5)^2}$
= $\sqrt{9 + 4 + 25}$
 $= \sqrt{38}$

Question 2. (10 marks)

- (a) Explain briefly how the placement of the brackets in the scalar triple product $\vec{u} \cdot (\vec{v} \times \vec{w})$ matters.
- (b) Find the volume of the parallelepiped defined by the vectors $\vec{u} = (2, -1, 3)$, $\vec{v} = (1, -2, -1)$ and $\vec{w} = (4, -2, 1)$

(a)
$$\vec{U} \cdot (\vec{V} \times \vec{W})$$
 is possible to compute it is the dot product of Two vectors

(b)
$$\left| \overrightarrow{U} \cdot (\overrightarrow{V} \times \overrightarrow{W}) \right| = volume$$

$$\overrightarrow{V} \times \overrightarrow{W} = (-4, -5, 6)$$

$$\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$

$$|\vec{U} \cdot (\vec{V} \times \vec{W})| = |(2,-1,3) \cdot (-4,-5,6)|$$

$$= |-8+5+18|$$

$$= |15| = |15|$$

Question 3. (10 marks)

Find an equation for the plane passing through the points A(1,2,0), B(-1,3,2) and C(0,2,1).

$$\overrightarrow{AB} = (-2,1,2)$$

 $\overrightarrow{AC} = (-1,0,1)$

$$\overrightarrow{n} = \overrightarrow{AB} \times \overrightarrow{AC} = (1, 0, 1)$$

$$\begin{pmatrix} -2 \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\chi + Z + d = 0$$

$$A(1,2,0) \rightarrow 1 + 0 + d = 0$$

$$d = -1$$

Question 4. (10 marks)

Find the distance between the line (x, y, z) = (1 + t, -2 - 3t, 2t) and the point P(1,2,2).

 \vec{V} is the direction vector of the Line $\vec{V} = (1, -3, 2)$

$$Proj_{\vec{v}} \stackrel{\rightarrow}{PoP} = \begin{pmatrix} -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} \end{pmatrix} \stackrel{\rightarrow}{V}$$

$$= -\frac{8}{14} (1, -3, 2) = (-\frac{4}{7}, \frac{12}{7}, -\frac{8}{7})$$

$$\vec{J} = P_0 P - P_0 \vec{J} \vec{J} P_0 P
= (0,4,2) - (-4/4, 12/4, -8/4)
= (4/4, 16/4, 22/4) = 2/4 (2,8,11)$$

$$\|\vec{d}\| = \frac{2}{7} \left(\sqrt{Z^2 + 8^2 + 11^2} \right) = \frac{2}{7} \sqrt{189}$$

Question 5. (10 marks)

Find parametric equations for the line that is perpendicular to the plane x-y+2z+2=0 and passes through the point P(1,2,3)

$$\vec{n} = (1,-1,2)$$
 this is the direction Vector For the line

$$(x,y,z) = (1,2,3) + (1,1,2)t$$

= $(1+t, 2-t),3+2t)$

Question 6. (10 marks)

Find an equation for the plane that is perpendicular to the plane 4x - y - z + 2 = 0 and contains the line (x, y, z) = (2 - 2t, 3t, 1 - t).

$$\vec{n} = \vec{n} \times \vec{d} = (4, 6, 10)$$
 $\begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \\ -1 \end{pmatrix}$

point on the plane (From the line)
$$P(2,0,1)$$

$$4x+6y+10z+d=0$$

 $4(2)+6(0)+10(1)+d=0$
 $18+d=0$ $d=-18$

Question 7. (10 marks)

Find the distance between the two parallel planes 2x - y + z + 3 = 0 and 4x - 2y + 2z - 3 = 0.

Po is on Plane 2 Po (3/4,0,0)

$$\vec{p}_{0}\vec{p} = (-3/4, 3, 0)$$

$$\vec{n}_2 = (4, -2, 2)$$

$$Proj_{n_2} \overrightarrow{P_0P} = \left(\frac{\overrightarrow{P_0P} \cdot \overrightarrow{n_2}}{\overrightarrow{n_2} \cdot \overrightarrow{n_2}}\right) \overrightarrow{n_2}$$

$$= -3 - 6 (4, -2, 2)$$

$$= -9/24(4,-2,2) = -9/2(2,-1,1)$$
$$= -3/4(2,-1,1)$$

$$= 3/4 \sqrt{2^2 + (-1)^2 + 1^2}$$

Question 8.

(a)(5 marks)

Show that the set of all 2x2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ with the standard matrix addition and scalar multiplication is **NOT** a vector space.

(b) (10 marks)

Let V be the set of all positive real numbers with operations

$$x + y = xy$$

$$kx = x^k$$

Prove that V satisfies axioms 4 and 5 for vector spaces (see back page for vector space axioms).

(a) Axiom I FAils

If
$$U = \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} & V = \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix}$$
 are in V

then $U+V = \begin{bmatrix} a+c & 2 \\ 2 & b+d \end{bmatrix}$ is Not in V

(b) AXIOM 4
THE
$$O_V = 1$$

then $\chi + O_V = \chi + 1 = \chi \cdot 1 = \chi$
AXIOM 5
 $-\chi = \frac{1}{\chi}$
then $\chi + (-\chi) = \chi \left(\frac{1}{\chi}\right) = 1 = O_V$

BONUS (5 marks)

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. Prove that \vec{u} is orthogonal to $\vec{u} \times \vec{v}$.

$$\overrightarrow{U} \times \overrightarrow{V} = (U_2V_3 - V_2U_3, -(U_1V_3 - V_1U_3), U_1V_2 - V_1U_2)$$

$$\begin{pmatrix} U_1 \\ U_2 \\ U_3 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

$$\vec{U} \circ (\vec{U} \times \vec{V}) = U_1 U_2 V_3 - U_1 V_2 U_3 - U_2 U_1 V_3 + U_2 V_1 U_3 + U_3 U_1 V_2 - U_3 V_1 U_2$$

SO J & JXJ ARE Orthogonal.

Vector Space Axioms

- 1- If u and v are objects in V, then u + v is in V.
- 2-u+v=v+u
- 3- u + (v + w) = (u + v) + w
- 4- There is an object 0_v called a zero object for V such that $0_v + u = u$ for all u in V.
- 5- For each u in V, there is an object -u in V called a negative of u such that u+(-u)=0
- 6- If k is any scalar and u is any object in V, then ku is in V
- 7-k(u+v) = ku + kv
- 8-(k+m)u = ku + mu
- 9-k(mu) = (km)u
- 10 1u = u