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Question 1. (10 marks)
(a) Find a vector that is orthogonal to both # = (3,2,—1) and v = (1,—1,—1).
(b) Find the area of the parallelogram defined by # and V.
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Question 2. (10 marks)

(a) Explain briefly how the placement of the brackets in the scalar triple product
i+ (V x W) matters.

(b) Find the volume of the parallelepiped defined by the vectors if = (2,—1,3),
v=(1,-2,—1) and w= (4,-2,1)
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Question 3. (10 marks)

Find an equation for the plane passing through the points A(1,2,0), B(—1,3,2)

and C(0,2,1).
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Question 4. (10 marks)
Find the distance between the line (x,y,z) = (1+¢,—2 — 3¢,2¢) and the point
P(1,2,2).
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Question 5. (10 marks)
Find parametric equations for the line that is perpendicular to the plane
x —y+2z+2 =0 and passes through the point P(1,2,3)
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Question 6. (10 marks)

Find an equation for the plane that is perpendicular to the plane 4x —y —z+2 =0
and contains the line (x,y,z) = (2 —2¢,3t,1 —1).
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Question 7. (10 marks)
Find the distance between the two parallel planes 2x —y+z+3 =0 and

4x —2y+2z—3=0.
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Question 8.
(a)(5 marks)

Show that the set of all 2x2 matrices of the form { a1

1 b
addition and scalar multiplication is NOT a vector space.

] with the standard matrix

(b) (10 marks)
Let V be the set of all positive real numbers with operations

X+y=2xy

fx = xk

Prove that V satisfies axioms 4 and 5 for vector spaces (see back page for vector
space axioms).
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BONUS (5 marks)
Let ii = (uy,up,u3) and ¥ = (v1,vq,v3). Prove that # is orthogonal to i x V.
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Vector Space Axioms

1-If u and v are objects in V, then u+visin V.

2-u+v=v+u

3-u+(v+w)=(ut+v)+w

4- There is an object 0, called a zero object for V such that 0, +u = u forall uin V.

5- For each u in V, there is an object —u in V called a negative of u such that
u+(—u) =0,

6- If k is any scalar and u is any object in V, then ki is in V
7- k(u+v) =ku + kv

8- (k+m)u = ku + mu

9- k(mu) = (km)u

10- lu=u



