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Question 1. (10 marks)
(a) Find a vector that is orthogonal to both i = (1,2, —4) and ¥ = (2,—1,—1).
(b) Find the area of the parallelogram defined by # and v.
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Question 2. (10 marks)

(a) Explain briefly how the placement of the brackets in the scalar triple product
i - (VX w) matters.

(b) Find the volume of the parallelepiped defined by the vectors i = (1,—1,3),
v=(2,-2,—1) and w = (4,—2,1)
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Question 3. (10 marks)
Find an equation for the plane passing through the points A(0,2,2), B(—1, -2, 2)
and C(—1,3,1).
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Question 4. (10 marks)
Find the distance between the line (x,y,z) = (2¢,—1 —3t,1+1¢) and the point

P(1,1,2).
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Question 5. (10 marks)

Find parametric equations for the line that is perpendicular to the plane . ,
2x+y+2z+2 = 0 and passes through the point P(1,2,2) Line
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Question 6. (10 marks)
Find an equation for the plane that is perpendicular to the plane 2x —y—4z+2 =0

and contains the line (x,y,z) = (2—1¢,2¢,1 —1).
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Question 7. (10 marks)
Find the distance between the two parallel planes 2x —y+z+3 = 0 and

HX-2y+2247=C
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Question 8.
(a)(5 marks)

Show that the set of all 2x2 matrices of the form { g I; } with the standard matrix

addition and scalar multiplication is NOT a vector space.

(b) (10 marks)

Let V be the set of all pairs of real numbers (1,x) with operations defined as fol-
lows:

(L,x)+(Ly) = (1,x+y)

k(1,x) = (1,kx)

Prove that V satisfies axioms 4 and 5 for vector spaces (see back page for vector
space axioms).
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BONUS (5 marks)
Let il = (u1,up,u3) and ¥ = (v1,vy,v3). Prove that i is orthogonal to i X V.
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Vector Space Axioms

1- If u and v are objects in V, then u-+visin V.

2-ut+v=v+u

3-ut+(v+w)=(ut+v)+w

A- There is an object 0, called a zero object for V such that 0, +u = u for all u mV.

5- For each u in V, there is an object —u in V called a negative of u such that
u+(—u) =0,

6- If k is any scalar and u is any objectin V, then kuisin V
7-k(u+v) =ku + kv

8- (k+tm)u=ku+mu -

9- k(mu) = (km)u

10-1u=u



