
Math 133 Midterm Solutions.

Problem 1: The problem is asking to find all the values of a and b so that
a given system system of equations has either no, a unique, or infinitely many
solutions.

Perform Gaussian row-reduction:




2 −1 1
1 2 −a
4 3 −1

∣

∣

∣

∣

∣

∣

6
11
b



 →





1 2 −a
2 −1 1
4 3 −1

∣

∣

∣

∣

∣

∣

11
6
b



 →

→





1 2 −a
0 −5 2a + 1
0 −5 4a − 1

∣

∣

∣

∣

∣

∣

11
−16

b − 44



 →





1 2 −a
0 −5 2a + 1
0 0 2a− 2

∣

∣

∣

∣

∣

∣

11
−16

b − 28



 .

In the first step we interchange the first two rows; in the second step we subtract
twice the first row from the second row, and subtract four times the first row
from the third row; in the third step we subtract the second row from the third
row. In principle we can also divide the second row by −5 to get an explicit 1
in the second column.

If 2a − 2 6= 0 (in other words a 6= 1) then we can divide the third row by
2a − 2 and obtain a 1 in the third column. Hence the system has a unique
solution regardless of what values are on the right. (Indeed, we can uniquely
solve for x3 using the third equation, then we can uniquely solve for x2 using
the second equations, and finally we can uniquely solve for x1 using the first
equations.)

If 2a−2 = 0 AND b 6= 28 then the system is inconsistent: the third equation
is of the form 0x1 + 0x2 + 0x3 = b − 28 6= 0. In this case the system has no
solutions.

If 2a− 2 = 0 AND b = 28 then the third row is a row of zeroes. The system
is consistent as there are no rows with zero coefficients and nonzero value on
the right, and indeterminate as the variable x3 is free (there is no pivot in the
third column). Thus the system has infinitely many solutions (paramaterized
by x3).

Problem 2: The problem is asking to write A−1 and A as the product of
elementary matrices.

First we row-reduce the matrix A:

A =

[

0 9
5 −4

]

→

[

5 −4
0 9

]

→

[

1 −4/5
0 9

]

→

[

1 −4/5
0 1

]

→

[

1 0
0 1

]

= I.
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In the first step we switch the two rows; in the second step we divide the first
row by 5; in the third step we divide the second row by 9; and in the fourth
step we add 4/5 of the second row to the first row.

Each such row operation corresponds to left-multiplication by a suitable
elementary matrix. Therefore E4E3E2E1A = I , where

E1 =

[

0 1
1 0

]

, E2 =

[

1/5 0
0 1

]

, E3 =

[

1 0
0 1/9

]

, E4 =

[

1 4/5
0 1

]

.

a).

A−1 = E4E3E2E1 =

[

1 4/5
0 1

][

1 0
0 1/9

] [

1/5 0
0 1

][

0 1
1 0

]

is the product of elementary matrices.

b). A = (A−1)−1 = E−1
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Computing the inverses of the elementary matrices (which are themselves ele-
mentary), we find that

A = E−1

1
E−1

2
E−1

3
E−1

4
=

[

0 1
1 0

] [

5 0
0 1

][

1 0
0 9

] [

1 −4/5
0 1

]

is the product of elementary matrices.

Remark: there are several different ways to do row-reduction, and so different
answers are possible.

Problem 3:

a). If A =

[

a11 a12

a21 a22

]

and B =

[

x 0
0 y

]

, then AB =

[

a11x a12y
a21x a22y

]

.

b). If B =

[

x 0
0 y

]

, then B2 =

[

x2 0
0 y2

]

, and so the condition B2 = B

means that

[

x2 0
0 y2

]

=

[

x 0
0 y

]

. It follows that x2 = x and y2 = y. Now, if

x2 = x, then x2 −x = 0, so x(x− 1) = 0, and so there are exactly two solutions
for x: x = 0 and x = 1. Similarly there are exactly two solutions for y: y = 0
and y = 1. Combining these 2× 2 = 4 cases, we get the following possibities for

B: B =

[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 0
0 1

]

,

[

1 0
0 1

]

(as the hint suggests, there

are exactly 4 of such solutions).

Remark: For part b) it is not enough to just guess four different solutions for
B, you need to show why these are all such solutions.

Problem 4:

a). The definition that C is the inverse of A is: AC = I , CA = I .
b). First solution: according to the definition, to prove that B−1A−1 is the in-
verse of AB, one needs to check that (B−1A−1)(AB) = I , and that (AB)(B−1A−1) =
I .
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We have: (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I. Similarly,
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

Second solution: if C denotes the inverse of AB, one can find C as follows: since
C(AB) = I , then (CA)B = I . Multiplying both sides by B−1 from the right, we
get (CA)BB−1 = IB−1, so (CA)I = B−1, and so CA = B−1. Multiplying both
sides by A−1 from the right, we get CAA−1 = B−1A−1 and so C = B−1A−1.
Thus we have found that the inverse C of AB is B−1A−1.

Problem 5:
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= 7 · 2 · 5 = 70.

In the first step we add three times the first row to the second row (having
no effect on the determinant); in the second step we pull the multiple of 7 out
of the second row and a multiple of 2 out of the third row; in the third step
we interchange the first two rows (multiplying the determinant by −1); and in
the last step we interchange the last two rows (multiplying the determinant by
another −1).

Remark: for a matrix A the symbol “|A|” means precisely “the determinant of
A”.

Problem 6:

a).
det(2BT A−1B−1C2AC−1) = 23 det(BT A−1B−1C2AC−1) =

= 23 det(BT ) det(A−1) det(B−1) det(C)2 det(A) det(C−1) =

= 23 det B
1

det A

1

det B
det(C)2 det(A)

1

det C
= 23 det C = 56.

b). We have: adj(A) = det(A) · A−1 = −5A−1. Hence

det(adj(A)) = det(−5A−1) = (−5)3 det(A−1) =
(−5)3

det A
= (−5)2 = 25.

Remark: for part b) one can also use the formula det(adj(A)) = (det A)n−1,
where n denote the size of the matrix A.


