Dawson College: Business Mathematics: 201-801-DW: Winter 2008

Name: Student ID:

Name: YANN LAMONTAGNE

Test 3

This test is graded out of 63 marks. No books, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (2 marks)

Express the percent 0.3% as a fraction and as a decimal.

$$\frac{3}{1000}$$
, 0.003

Question 2. (4 marks)

Evaluate the following to two decimal places:

$$1.\sqrt[4]{4523} = 3.33$$

2.
$$(34643)^{\frac{5}{3}} = 36815086.32$$

$$3. -(3)^{-1} = -\frac{1}{3} = 0.33$$

4.
$$(2.89)^1 = 2.89$$

Question 3. (3 marks)

Alexander invests \$6 500 in a bank account for 2 years and 5 months at 7% interest p.a. compounded monthly. What is the future value of Alexander's investment? How much interest does Alexander earn?

$$m = 12$$

$$i = \frac{1}{2} = \frac{7\%}{12} = \frac{0.07}{12}$$

$$n = 12(2\frac{5}{12}) = 29$$

$$FV = PV (1+i)^{n}$$

$$= 6500 (1+\frac{0.07}{12})^{29}$$

$$= $7694,28$$

, the future value of Alexander is \$7694.28 and he earned 1194.28 interest.

Question 4. (6 marks)

Henri wants to invest \$65 000 in a savings bank account. He has two choices: Bank Double-Interest offers a sayings account with an interest rate of 2.75% compounded monthly, Cookie Bank offers a savings account with interest rate of 3% compounded yearly. Suppose the investment period is 6 years and 6 months. Which bank should Henri choose? What is the difference in the amount of interest earned between the two banks?

Bank Double-Interest:
$$FV = PV(1+i)^n$$

 $= 65000(1 + \frac{20275}{12})^{12.62}$
 $= 877706.02$ The interest difference
Cookie Bank: $FV = PV(1+i)^n$
 $= 65000(1+0.03)^{6\frac{1}{2}}$
 $= 78769.00
 $= 78769.00
 $= 78769.00
 $= 78769.00
 $= 1062.98
Ouestion 5. (6 marks)

Question 5. (6 marks)

Marc wins the lottery and has the option of getting \$2 000 000 now or \$1 000 000 now and \$1 200 000 in 15 years. Since Mark was a former AEC student he chose the right option. If money was worth 4.75% compounded monthly what did did Mark choose? By how much was his choice better in present value money?

Option 1:
\$ 2 000 000
Option 2:
In present value:

$$1000 000 + \frac{FV}{(1+i)^{h}}$$
 where: $FV = 1200 000$
 $m = 12$
 $i = \frac{1}{m} = \frac{0.0975}{12}$
 $m = 12(15) = 180$
 $m = 12(15) = 180$
 $m = 12(15) = 180$
 $m = 12(15) = 180$

Question 6. (3 marks)

What sum of money will accumulate to \$5 300 over 4 years and 6 months if the money is worth 5.75% compounded quartely?

$$P = \frac{S}{(1+i)^n}$$

$$m = \frac{4}{12} = 18$$

$$i = \frac{1}{m} = \frac{0.0575}{4} = 0.014375$$

$$= \frac{5300}{(1+0.014375)^{18}}$$

$$S = $5300$$

$$= $4099.23$$
The sum of money needed is \$4099.23

Question 7. (3 marks)

What effective rate is equivalent to a nominal rate of 3.75% compounded quartely?

$$f = (1+i)^m - 1$$
 where $m = 4$
= $(1+0.009375)^4 - 1$ $i = \frac{1}{2} = 0.009375$
= 3.80%

the equivalent effective rate is 3,80%

Question 8. (3 marks)

Joe wants to invest in a savings account, he deposits \$2 in his savings account every day for 20 years. What will be the balance of his savings account in 20 years if his savings account has a nominal interest rate of 2.75% compounded daily?

$$FV = PMT \left[\frac{(1+i)^{n}-1}{i} \right] \qquad m = 365$$

$$i = \frac{1}{m} = \frac{0.0275}{365}$$

$$PMT = 2$$

$$n = 365(20) = 7300$$

$$m = 365(20) = 7300$$

$$m = 365(20) = 7300$$

$$m = 365(20) = 7300$$

the balance of his account will be \$19463.58.

Question 9. (3 marks)

Yann got a loan of \$4 100 to pay for a super fast computer. He is to repay the loan by payments of \$200 monthly. If the interest is 7.25% compounded monthly, how many months will it take Yann to repay the loan?

Where PMT = 200, PV = 4160, m = 12, L = 0.00625

to repay the loan?

$$PV = PMT \left[\frac{1 - (1+i)^{-h}}{i} \right]$$

$$Where$$

$$4100 = 200 \left[\frac{1 - (1 + 0.00625)^{-h}}{0.00625} \right]$$

$$\ln (1.00625)^{-n} = \ln (0.871875)$$

$$n = -\frac{\ln (0.871875)}{\ln (1.00625)}$$

$$n = 23$$

$$7.128125 = 1 - (1 + 0.00625)^{-n}$$

.". It will take Your 23 months to repay the

Question 10. (3 marks)

George wants to receive \$700 at the end of every month for two years, how much does he need to deposit at the beginning of the two-year period if the interest rate is 5% compounded monthly?

$$PV = PMT \left[\frac{1 - (1 + i)^{-1}}{i} \right] \qquad PMT = 700, \ m = 12, \ i = \frac{0.05}{m} = \frac{0.05}{12}$$

$$= 700 \left[\frac{1 - (1 + \frac{0.05}{12})^{-24}}{0.05} \right] \qquad \text{he needs $$15.955.73$}$$

Question 11. (3 marks)

What deposit made at the end of each quarter for 15 years will accumulate to \$25 000 at an interest rate of 7% compounded quartely?

$$FV = PMT \left[\frac{(Hi)^n - 1}{i} \right]$$

$$PMT = \frac{FV}{\left[\frac{(Hi)^n - 1}{i} \right]}$$

$$= 25 000$$

$$\begin{bmatrix}
 \frac{25000}{(1+\frac{0.07}{4})^{60}-1} \\
 \frac{0.07}{4}
 \end{bmatrix}$$

Question 12. (5 marks)

Darcy took two equal sized loans, one 4 months ago and the other 7 months ago. He repaid the loans today, a total of \$2 450. If the interest on the loans was 7% p.a. then what was the size of each loan?

$$2450 = X(1+rt,) + X(1+rt_2)$$

$$2450 = X(1+0.07(\frac{7}{12})) + X(1+0.07(\frac{7}{12}))$$

$$2450 = 1.02\overline{3} \times + 1.0408\overline{3} \times$$

$$X = $1186.92$$

the size of the loan is \$118692.

Question 13. (4 marks)

The component cost to make an OGG Vorbis player is four-ninth of the total cost and labour is one-third of the component cost. If cost of labour is \$11 what is the total cost of the MP3/OGG Vorbis player.

Total Cost =
$$\frac{9}{4}$$
 (Component Cost)

Component Cost = $\frac{9}{4}$ (Component Cost)

Labour Cost = $\frac{1}{3}$ = 74.25

Component Cost = 3 (Lakour Cost)

= $3(11) = 33$

Question 14. (5 marks)

A store buys a sofa for \$2 500 less a trade discount of 35%, 25%, 15%. What is the selling price of the sofa if the store expenses are 25% of the selling price and require a profit of 15% on the selling price. What is the selling price? What is the markup based on the cost?

Cost =
$$(List price)(1-d_1)(1-d_2)(1-d_3)$$

= $2500 (1-0.35)(1-0.25)(1-0.15)$
= $$1035.94$
Selling price = $Cost + Expense + Profit$
 $S = C + E + P$
 $S = 1035.94 + 257.0 + S + 157.0 + S$
 $S = 1035.94 + 0.25S + 0.15S$
The value of markup
 $0.6S = 1035.94$
 $S = $1726.57 - 1035.94$
 $S = $1726.57 - 1035.94$
 $S = $1726.57 - 1035.94$

. the selling price is \$1726.57

Question 16. (3 marks)

Bobby received \$55.01 interest for a deposit of \$6 200 invested for a period of 120 days. What was the rate of interest p.a.?

$$I = P_{t}t$$
 $r = I$
 pt
 $= \frac{55.01}{6200(\frac{120}{365})}$
 $= 2.70 \%$

Question 17. (2 marks)

Compute the future value of \$2 123 over seven months at $3\frac{3}{4}\%$ p.a.?

, the toture value is 2169,44

Question 18. (5 marks)

Ron borrowed \$20 000 today and is to repay the loan in two equal payments, one in seven months and the other in nine months. If the interest rate is 6.5% p.a. What is the size of the equal payments?

$$20\ 000 = \frac{x}{(1+rt_1)} + \frac{x}{(1+rt_2)}$$
, the size of the equal payment is
$$\frac{x}{(1+0.065(\frac{7}{12}))} + \frac{x}{(1+0.065(\frac{9}{12}))}$$

$$20\ 000 = 0.963468486 \times + 0.95351609 \times$$

Bonus Question (3 marks)

Derive the formula for future value of a simple ordinary annuity from a geometric progression.