YANN LAMONTAGEN C Student ID:

Quiz 3

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §4.2#47 (4 marks)

Use the limit process to find the area of the region between the graph of the function f(x) = -2x + 3 and the x-axis over the interval [0, 1]:

Avea =
$$\lim_{N\to\infty} \sum_{i=1}^{N} f(\alpha + i\Delta x) \Delta x$$
 where $\Delta x = \frac{b-\alpha}{N} = 1$

$$= \lim_{N\to\infty} \sum_{i=1}^{N} (-\lambda (i\Delta x) + 3) \Delta x$$
 $\Rightarrow \lim_{N\to\infty} \frac{2}{N^2} (\frac{n(n+1)}{x}) + \lim_{N\to\infty} \frac{1}{N} dx$

$$= \lim_{N\to\infty} \sum_{i=1}^{N} (-\lambda (i\Delta x) + 3) \frac{1}{N} = \lim_{N\to\infty} (-\lambda (i\Delta x)$$

Question 2. §5.7#13 (3 marks)

Integrate the following definite integral:

$$\int_{-1}^{1} (t^3 - 9t) dx = \left[\frac{t}{4} - \frac{9}{2} t^2 \right]$$

$$= \left[\frac{11}{4} - \frac{9}{2} (1)^2 - \left[\frac{(-1)^4}{4} - \frac{9(-1)^2}{2} \right] \right]$$

$$= \frac{1}{4} - \frac{9}{2} - \frac{1}{4} + \frac{9}{2} = 0$$

Question 3. §4.3#33,34,35 (3 marks)

Given $\int_2^4 x^3 dx = 60$ and $\int_2^4 x dx = 6$ evaluate the following definite integrals:

$$\int_{4}^{2} x \, dx = -\int_{2}^{4} x \, dx = -6$$

$$\int_2^2 x^3 dx = 0$$

$$\int_{2}^{4} 4x \, dx = 4 \int_{2}^{4} x \, dx = 4.6 = 24$$