Compound Interest

March 2, 2009

Compound Interest:

- Compound interest is a type of interest where after a defined period of time the initial principal along with the interest is reinvested. The process of reinvesting is called compounding.
- Example: (Compound interest) What is the future value of $\$ 1000$ at 10% compounded yearly for 3 years.

Year	Principal	Interest	Future Value
1	$\$ 1000$	$\$ 100$	$\$ 1100$
2	$\$ 1100$	$\$ 110$	$\$ 1210$
3	$\$ 1210$	$\$ 121$	$\$ 1331$

- Example: (Simple interest) What is the future value of $\$ 1000$ at 10% for 3 years.

$$
\begin{aligned}
S & =P(1+r t) \\
& =1000(1+0.1(3)) \\
& =\$ 1300
\end{aligned}
$$

Compound Interest: Future Value

- The future value formula for compound interest is given by

$$
F V=P V(1+i)^{n}
$$

where $F V$ is the future value, $P V$ is the principal value (or present value), i the periodic rate of interest, n is the number of compounding period.

- The value for i and n can be determined by the two following formula.

$$
\begin{aligned}
i & =\frac{j}{m} \\
n & =t m
\end{aligned}
$$

where j is the nominal interest rate (i.e. interest rate per year), m is the number of compounding per year, t is the length of the term of investment or loan (the unit being years).

Compound Interest: Future Value

- Compounding Frequency Table:
$\left.\begin{array}{|l|l|l|}\hline \text { Compounding } & \begin{array}{l}\text { Lenght of Com- } \\ \text { prequency }\end{array} & m \\ \hline \text { pounding Period }\end{array}\right)$

Compound Interest: Future Value: Example

- What is the future value of $\$ 8000$ invested at 3.75% per annum, compounded daily for 3 years?

$$
\begin{aligned}
n & =m t \\
& =365(3) \\
& =1095 \\
i= & \frac{j}{m} \\
= & \frac{0.0375}{365} \\
= & 0.000102739
\end{aligned}
$$

$$
\begin{aligned}
F V & =P V(1+i)^{n} \\
& =8000(1+0.000102739)^{1095} \\
& =\$ 8952.53
\end{aligned}
$$

Compound Interest: Future Value: Example:

- Find the accumulated value of \$2593.23 invested for $2 \frac{1}{3}$ years at a nominal rate of 6% compounded quartely?

$$
\begin{aligned}
n & =m t \\
& =4\left(2 \frac{1}{3}\right) \\
& =9 \frac{1}{3} \\
& =\frac{28}{3} \\
i & =\frac{j}{m} \\
& =\frac{0.06}{4} \\
& =0.015
\end{aligned}
$$

$$
\begin{aligned}
F V & =P V(1+i)^{n} \\
& =2593.23(1+0.015)^{\frac{28}{3}} \\
& =\$ 2979.83
\end{aligned}
$$

Compound Interest: Present Value

- Present value is the required principal needed to obtain a future value. The equation is obtained from the future value equation $F V=P V(1+i)^{n}$ by isolating $P V$:

$$
\begin{aligned}
P V & =\frac{F V}{(1+i)^{n}} \\
P V & =F V(1+i)^{-n}
\end{aligned}
$$

- Example: What principal is required to obtain a future value of $\$ 1520$ at a nominal rate of 5% compounded monthly for 13 months?

$$
\begin{aligned}
n & =m t=12\left(\frac{13}{12}\right)=13 \\
i & =\frac{j}{m}=\frac{0.05}{12}=0.004166666 \\
P V & =F V(1+i)^{-n} \\
& =1520(1+0.004166666)^{-13} \\
& =\$ 1440.02
\end{aligned}
$$

Compound Interest: Present Value: Example

- Sasha wants to have $\$ 25000$ in ten and a half years. If he can invest into an account with a nominal rate of 3.75% compounded annually, how much does Sasha need to invest now?

$$
\begin{aligned}
n & =m t \\
& =1\left(10 \frac{1}{2}\right) \\
& =\frac{21}{2} \\
i & =\frac{j}{m} \\
& =\frac{0.0375}{1} \\
& =0.0375
\end{aligned}
$$

$$
P V=F V(1+i)^{-n}
$$

$$
=25000(1+0.0375)^{-\frac{21}{2}}
$$

$$
=\$ 16984.97
$$

Compound Interest: Effective Interest Rates

- Effective rate of interest is the equivalent interest rate which compounded annually will result in the same amount of interest as a nominal interest rate compounded more than once.
- It is used to compare different nominal interest rates with different compounding period (i.e. m).
- Let f be the effective rate of interest. The formula for f is obtained by letting the future value of $P V$ at a rate of f compounded annually for a year equal the future value of $P V$ at a periodic interest rate of i compounded $m>1$ times.

$$
\begin{aligned}
P V(1+f)^{1} & =P V(1+i)^{m} \\
1+f & =(1+i)^{m} \\
f & =(1+i)^{m}-1
\end{aligned}
$$

Compound Interest: Effective Interest Rates: Example

- Find the effective rate of interest of 7% compounded:
a) quartely b) monthly c) daily.

$$
\begin{aligned}
f & =(1+i)^{m}-1 \\
& =\left(1+\frac{7 \%}{4}\right)^{4}-1 \\
& =7.19 \% \\
f & =(1+i)^{m}-1 \\
& =\left(1+\frac{7 \%}{12}\right)^{12}-1 \\
& =7.23 \% \\
f & =(1+i)^{m}-1 \\
& =\left(1+\frac{7 \%}{365}\right)^{365}-1 \\
& =7.25 \%
\end{aligned}
$$

Compound Interest: Effective Interest Rates: Example

- If $\$ 2000$ accumulates to $\$ 2374.32$ in three and a quarter years, what is the effective annual rate?

$$
\begin{aligned}
P V(1+f)^{t} & =P V(1+i)^{m t} \\
2000(1+f)^{13 / 4} & =2374.32 \\
(1+f)^{13 / 4} & =1.18716 \\
(1+f)^{13 / 4} & =1.18716 \\
1+f & =(1.18716)^{4 / 13} \\
f & =(1.18716)^{4 / 13}-1 \\
f & =5.4 \%
\end{aligned}
$$

