Compound Interest

March 2, 2009

Compound Interest:

- *Compound interest* is a type of interest where after a defined period of time the initial principal along with the interest is reinvested. The process of reinvesting is called *compounding*.
- **Example:** (Compound interest) What is the future value of \$1 000 at 10% compounded yearly for 3 years.

Year	Principal	Interest	Future Value
1	\$1 000	\$100	\$1 100
2	\$1 100	\$110	\$1 210
3	\$1 210	\$121	\$1 331

• Example: (Simple interest) What is the future value of \$1 000 at 10% for 3 years.

$$S = P(1+rt) = 1000(1+0.1(3)) = $1300$$

Compound Interest: Future Value

 The future value formula for compound interest is given by

$$FV = PV(1+i)^n$$

where FV is the future value, PV is the principal value (or present value), *i* the *periodic rate of interest*, *n* is the number of compounding period.

• The value for *i* and *n* can be determined by the two following formula.

$$i = \frac{j}{m}$$
$$n = tm$$

where j is the nominal interest rate (i.e. interest rate per year), m is the number of compounding per year, t is the length of the term of investment or loan (the unit being years).

Compound Interest: Future Value

• Compounding Frequency Table:

Compounding	Lenght of Com-	т
Frequency	pounding Period	
Annually	12 months	1
Semi-Annually	6 months	2
Quarterly	3 months	4
Monthly	1 month	12
Daily	1 day	365

Compound Interest: Future Value: Example

• What is the future value of \$8 000 invested at 3.75% per annum, compounded daily for 3 years?

$$n = mt$$

= 365(3)
= 1095

$$i = \frac{j}{m} \\ = \frac{0.0375}{365} \\ = 0.000102739$$

$$FV = PV(1+i)^{n}$$

= 8000(1+0.000102739)¹⁰⁹⁵
= \$8952.53

Compound Interest: Future Value: Example:

• Find the accumulated value of \$2 593.23 invested for $2\frac{1}{3}$ years at a nominal rate of 6% compounded quartely?

$$n = mt$$
$$= 4\left(2\frac{1}{3}\right)$$
$$= 9\frac{1}{3}$$
$$= \frac{28}{3}$$
$$i = \frac{j}{m}$$
$$= \frac{0.06}{4}$$
$$= 0.015$$

$$FV = PV(1+i)^{n}$$

= 2593.23(1+0.015)²⁸/₃
= \$2979.83

5

Compound Interest: Present Value

• *Present value* is the required principal needed to obtain a future value. The equation is obtained from the future value equation $FV = PV(1+i)^n$ by isolating *PV*:

$$PV = \frac{FV}{(1+i)^n}$$
$$PV = FV(1+i)^{-n}$$

• Example: What principal is required to obtain a future value of \$1 520 at a nominal rate of 5% compounded monthly for 13 months?

$$n = mt = 12\left(\frac{13}{12}\right) = 13$$

$$i = \frac{j}{m} = \frac{0.05}{12} = 0.004166666$$

$$PV = FV(1+i)^{-n}$$

$$= 1520(1+0.004166666)^{-13}$$

$$= \$1440.02$$

Compound Interest: Present Value: Example

 Sasha wants to have \$25 000 in ten and a half years. If he can invest into an account with a nominal rate of 3.75% compounded annually, how much does Sasha need to invest now?

$$n = mt$$
$$= 1\left(10\frac{1}{2}\right)$$
$$= \frac{21}{2}$$
$$i = \frac{j}{m}$$
$$= \frac{0.0375}{1}$$
$$= 0.0375$$

$$PV = FV(1+i)^{-n}$$

= 25000(1+0.0375)^{-\frac{21}{2}}
= \$16984.97

Compound Interest: Effective Interest Rates

- Effective rate of interest is the equivalent interest rate which compounded annually will result in the same amount of interest as a nominal interest rate compounded more than once.
- It is used to compare different nominal interest rates with different compounding period (i.e. *m*).
- Let *f* be the effective rate of interest. The formula for *f* is obtained by letting the future value of *PV* at a rate of *f* compounded annually for a year equal the future value of *PV* at a periodic interest rate of *i* compounded *m* > 1 times.

$$PV(1+f)^1 = PV(1+i)^m$$

 $1+f = (1+i)^m$
 $f = (1+i)^m - 1$

Compound Interest: Effective Interest Rates: Example

Find the effective rate of interest of 7% compounded:
a) quartely b) monthly c) daily.

$$f = (1+i)^m - 1$$

= $\left(1 + \frac{7\%}{4}\right)^4 - 1$
= 7.19%

$$f = (1+i)^m - 1$$

= $\left(1 + \frac{7\%}{12}\right)^{12} - 1$
= 7.23%

$$f = (1+i)^m - 1$$

= $\left(1 + \frac{7\%}{365}\right)^{365} - 1$
= 7.25%

Compound Interest: Effective Interest Rates: Example

• If \$2 000 accumulates to \$2 374.32 in three and a quarter years, what is the effective annual rate?

$$PV(1+f)^{t} = PV(1+i)^{mt}$$

$$2000(1+f)^{13/4} = 2374.32$$

$$(1+f)^{13/4} = 1.18716$$

$$(1+f)^{13/4} = 1.18716$$

$$1+f = (1.18716)^{4/13}$$

$$f = (1.18716)^{4/13} - 1$$

$$f = 5.4\%$$