\qquad

Test 2

This test is graded out of 43 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. Compute the derivative of the following functions (1 mark each):
a.
$f(x)=\sin x$
b.
$f(x)=\cos x$
c.
$f(x)=\csc x$
d.
$f(x)=\sec x$
e.
$f(x)=\tan x$
f.
$f(x)=\cot x$
g.
$f(x)=\arcsin x$
h.
$f(x)=\arccos x$
i.
$f(x)=\arctan x$
j.
$f(x)=\ln x$
k.
$f(x)=e^{x}$

Question 2. Compute the derivative of the following functions. (Do not simplify.)
a. (3 marks)

$$
g(t)=t e^{\arctan 5 t}
$$

b. (3 marks)

$$
z(x)=(\csc 4 x)(\tan 3 x)
$$

c. (3 marks)

$$
h(z)=\ln \left[(z+2)^{2}(3 z+1)^{3}\right]
$$

Question 3. Compute the derivative of the following functions. (Do not simplify.)
a. (3 marks)

$$
f(x)=\frac{e^{\pi x}+1}{\cos \pi x}
$$

b. (3 marks)

$$
g(z)=\sqrt{\arcsin (\ln (\sin 3 x))}
$$

c. (3 marks)

$$
s(t)=((\sec x) \ln (\cos x))^{7}
$$

Question 4. (5 marks) Find the equation of the normal to the curve $y=\arctan (\ln x)$ at $x=1$.

Question 5. (4 marks) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the relation

$$
\ln (x y)=x^{2}
$$

Question 6. (5 marks) Find a root of $x^{3}+2 x^{2}-x-1=0$ to at least four decimal places by using Newton's Method and let $x_{0}=0.8$.

Bonus. (3 marks) Find the derivative of $y=\operatorname{arcsec} x$ (hint: use implicit differentiation).

