Name:

 Student ID:

Test 2

This test is graded out of 43 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. Compute the derivative of the following functions (*1 mark each*):

a. $f(x) = \sin x$ b. $f(x) = \cos x$ c. $f(x) = \csc x$ d. $f(x) = \sec x$ e. $f(x) = \tan x$ f. $f(x) = \cot x$ g. $f(x) = \arcsin x$ h. $f(x) = \arccos x$ i. $f(x) = \arctan x$ j. $f(x) = \ln x$ k. $f(x) = e^x$

Question 2. Compute the derivative of the following functions. (Do not simplify.)

a. (3 marks)

$$g(t) = te^{\arctan 5t}$$

b. (3 marks)

$$z(x) = (\csc 4x)(\tan 3x)$$

c. (3 marks)

$$h(z) = \ln \left[(z+2)^2 (3z+1)^3 \right]$$

Question 3. Compute the derivative of the following functions. (Do not simplify.)

a. (3 marks)

$$f(x) = \frac{e^{\pi x} + 1}{\cos \pi x}$$

b. (3 marks)

$$g(z) = \sqrt{\arcsin(\ln(\sin 3x))}$$

c. (3 marks)

$$s(t) = ((\sec x)\ln(\cos x))^7$$

Question 4. (5 marks) Find the equation of the normal to the curve $y = \arctan(\ln x)$ at x = 1.

Question 5. (4 marks) Find $\frac{d y}{dx}$ and $\frac{d^2 y}{dx^2}$ for the relation $\ln(xy) = x^2$

Question 6. (5 marks) Find a root of $x^3 + 2x^2 - x - 1 = 0$ to at least four decimal places by using Newton's Method and let $x_0 = 0.8$.

Bonus. (3 marks) Find the derivative of $y = \operatorname{arcsec} x$ (*hint: use implicit differentiation*).