\qquad

Test 3

This test is graded out of 41 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. Compute the indefinite integral(1 mark each):
a.

$$
\int \sec x d x
$$

b.

$$
\int \csc x d x
$$

c.

$$
\int \tan x d x
$$

d.

$$
\int \cot x d x
$$

e.

$$
\int e^{x} d x
$$

f.

$$
\int \frac{1}{x} d x
$$

g. (bonus)

$$
\int \frac{1}{1+x^{2}} d x
$$

h. (bonus)

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

Question 2. Compute the indefinite integral.
a. (3 marks)

$$
\int \frac{z(z-1)}{\sqrt{z}} d z
$$

b. (5 marks)

$$
\int \sin \pi x \cos ^{7} \pi x d x
$$

c. (4 marks)

$$
\int \theta e^{\theta^{2}} d \theta
$$

d. (2 bonus marks)

$$
\int \frac{1}{e^{x}+e^{-x}} d x
$$

Question 3. (5 marks) A ladder us slipping down along a vertical wall. If the ladder is 4 m long and the top of it is slipping at the constant rate of $3 \mathrm{~m} / \mathrm{s}$, how fast is the bottom of the ladder moving along the ground when the bottom is 2 m from the wall?

Question 4. Let $f(x)=x(x-4)^{3}$
a. (2 marks) Find the x and y intercepts of $f(x)$.
b. (2 marks) Find $f^{\prime}(x)$ and solve for the critical points.
c. (2 marks) On what intervals is $f(x)$ increasing/decreasing?
d. (1 mark) Identify the relative minimum and maximum.
e. (1 mark) Find $f^{\prime \prime}(x)$.
f. (2 marks) On what intervals is $f(x)$ concave up/down?
g. (1 mark) Identify any inflection points.
h. (2 marks) Sketch the graph of $f(x)$.

Question 5. (5 marks) A rectangular building covering $7000 \mathrm{~m}^{2}$ is to be built on a rectangular lot. If the building is to be 10 m from the boundary lot on each side and 20 m from the boundary in front and back, find the dimensions of the building if the area of the lot is a minimum.

Bonus. (3 marks) A light in a garage is 3 m above the floor and 4 m behind the door. If the garage door descends vertically at $0.5 \mathrm{~m} / \mathrm{s}$, how fast is the door's shadow moving toward the garage when the door is $\frac{\sqrt{3}}{2}$ above the floor.

