Dawson College: Calculus II: 201-NYB-05-S02: Winter 2010
Name:Student ID:
Test 3
This test is graded out of 50 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.
Question 1. (5 marks) Set up the integral to find the volume of the solid obtained from the region bounded by the graphs of $y = \sqrt{x+1}+1$, $y=6-x$ and $y=1$ rotated about the line $y=6$.

Question 2. (5 marks) A tank which has the shape of a cone with its tip upwards has a 10m diameter on the bottom and a height of 6m. Set up the integral to find the work required to empty the tank of with a liquid with an arbitrary density ρ from a pump 3m above the tip of the tank.

Question 3. (5 marks) Find the arc length of the graph of

$$y = \frac{x^2}{2} - \frac{\ln x}{4}$$

on the interval [1, e]

Question 4. (5 marks) Determine whether the sequence converges or diverges. If it converges, find the limit.

$$a_n = \frac{n! \sin\left(\frac{1}{n}\right)}{(n-1)!}$$

Question 5. (5 marks) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

$$\sum_{n=1}^{\infty} \frac{2 + \pi^{n+1}}{e^{n-1}}$$

Question 6. (5 marks) Determine whether the series is convergent or divergent. If it is convergent, find its sum.

$$\sum_{n=2}^{\infty} \left[\operatorname{arcsec}(n-1) - \operatorname{arcsec}(n+1) \right]$$

Question 7. (5 marks) If the n^{th} partial sum of a series $\sum_{n=1}^{\infty} a_n$ is

$$S_n = \arctan n$$

find a_n and $\sum_{n=1}^{\infty} a_n$.

Question 8. (5 marks) Determine whether the following series converges or diverges. Justify your answer.

$$\sum_{n=3}^{\infty} \frac{\sqrt{n+1}}{n\sqrt{n-\sqrt{n}-1}}$$

Question 9. (5 marks) Determine whether the following series converges or diverges. Justify your answer.

$$\sum_{n=5}^{\infty} \frac{n(2n)!}{3^n n!}$$

Question 10. (5 marks) Prove: If p > 1 then

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

converges.

Bonus Question.

- a. (1 mark) State the $K(\varepsilon)$ definition of the limit of a sequence.
- b. (3 marks) Using the $K(\varepsilon)$ definition show that

$$\lim_{n\to\infty}\frac{(-1)^n n}{n^2+1}=0$$

c. (3 marks) Using the $K(\varepsilon)$ definition show: If a_n converges to a and b_n converges to b then $a_n + b_n$ converges to a + b.