Name: Y.LAMONTAGNE
Student ID:

Quiz 10

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (5 marks) Solve by Cramer's rule

$$7x + 5y = 9$$
 $5x + 7y = 3$
 \Rightarrow
 $A \times = b$ where $A = \begin{bmatrix} 7 & 5 \\ 5 & 7 \end{bmatrix}$ and $b = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$

b. (5 marks) Find the matrix A such that

$$(A^t - 5I)^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

where I is the 2×2 | dentity matrix.

$$A_1 = \begin{bmatrix} 9 & 5 \\ 3 & 7 \end{bmatrix} , A_2 = \begin{bmatrix} 7 & 9 \\ 5 & 3 \end{bmatrix}$$

$$\det A_1 = 9.7 - 5.3 = 48$$

$$\det A_2 = 7.3 - 9.5 = -24$$

$$\det A = 49 - 25 = 24$$

$$\therefore x = \frac{\det A_1}{\det A} = \frac{48}{24} = 2$$

$$\det A = 49 - 25 = 24$$

$$y = \frac{\det A_2}{\det A} = \frac{-24}{24} = -1$$

$$(A^{t}-5I)^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$A^{t}-5I = \begin{bmatrix} 0 & 17 \\ -1 & 6 \end{bmatrix}^{-1}$$

$$A^{t} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + 5 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{t} = \begin{bmatrix} 5 & -1 \\ 1 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 1 \\ -1 & 5 \end{bmatrix}$$