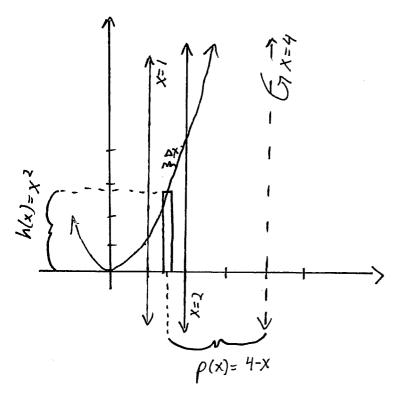
Name: V. Lamontcone
Student ID:


Quiz 9

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. (5 marks) §7.3 #17

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the specified axis. Sketch the region and a representative rectangle.

$$y = x^2$$
, $y = 0$, $x = 1$, $x = 2$; about $x = 4$

$$\Delta V = 2\pi \rho(x) h(x) \Delta x$$
$$= 2\pi (4-x) x^2 \Delta x$$

$$V = \int_{1}^{2} 2\pi \left(4 - x \right) x^{2} dx$$

$$= 2\pi \int_{1}^{2} 4x^{2} - x^{3} dx$$

$$= 2\pi \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]^2$$

$$= 2\pi \left[\left[\frac{42^{3}}{3} - \frac{24}{4} \right] - \left[\frac{4}{3} - \frac{1}{4} \right] \right]$$

$$= 2\pi \left[\left[\frac{32}{3} - 4 \right] - \left[\frac{4}{3} - \frac{1}{4} \right] \right]$$

Question 2. (2 marks) §8.1 #6 Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, ...\right\}$$

$$Q_{n} = (-1)^{n} \quad \underline{n} \quad (N+1)^{2}$$

Question 3. (3 marks) §8.1 #19 Determine whether the sequence converges or diverges. If it converges, find the limit.

$$\begin{cases} n^{2}e^{-n} \rbrace & \text{Let} \quad f(x) = x^{2}e^{-x} \end{cases}$$

$$\lim_{X \to \infty} f(x) = \lim_{X \to \infty} x^{2}e^{-x} \quad I.F. \quad \infty.0$$

$$= \lim_{X \to \infty} \frac{x^{2}}{e^{x}} \quad I.F. \quad \infty$$

$$= \lim_{X \to \infty} \frac{x^{2}}{e^{x}} \quad by \quad H^{2} \quad I.F. \quad \infty$$

$$= \lim_{X \to \infty} \frac{x}{e^{x}} \quad by \quad H^{3} \quad I.F. \quad \infty$$

$$= \lim_{X \to \infty} \frac{x}{e^{x}} \quad by \quad H^{3} \quad I.F. \quad \infty$$

$$= \lim_{X \to \infty} \frac{x}{e^{x}} \quad by \quad H^{3} \quad I.F. \quad \infty$$

$$= \lim_{X \to \infty} \frac{x}{e^{x}} \quad by \quad H^{3} \quad I.F. \quad \infty$$

$$\{n^2e^{-n}\} \rightarrow 0$$
 as $n \rightarrow \infty$

Bonus. (5 marks) Evaluate the improper integral or show it diverges:

$$\int_{-\infty}^{\infty} \frac{1}{2x^2 - 4x + 4} \, dx$$

see test #2