Calculus II

Recall that calculus was developed by Isaac Newton and Gottfried Wilhelm Leibniz in order to solve two main problems.

The first problem was investigated in calculus I: Find the tangent line to a curve at a given point on the curve.

In calculus I we found that the slope of the tangent line T to the curve at $x=a$ is given by $f^{\prime}(a)$, the derivative at a.

The second problem will be investigated in calculus II: Find the area of a planar region bounded by a curve.

Like how the tangent line problem is related to the derivative of a function, we will see that the area problem is related to the antiderivative of a function.

Antiderivatives and the rules of Integration

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Example: Show that $F(x)=\frac{1}{3} x^{3}+2 x^{2}-5$ is an antiderivative of $f(x)=x^{2}+4 x$. Solution:

Notice that

$$
\begin{aligned}
F(x) & =\frac{1}{3} x^{3}+2 x^{2}-5 \\
H(x) & =\frac{1}{3} x^{3}+2 x^{2}+6 \\
P(x) & =\frac{1}{3} x^{3}+2 x^{2}
\end{aligned}
$$

are all antiderivatives of $f(x)$.

In fact, if $G(x)$ is any antiderivative of a function $f(x)$ then any antiderivative $F(x)$ of $f(x)$ must be of the form $F(x)=G(x)+C$ where C is a constant.

The operation of finding all antiderivatives is called antidifferentiation (or indefinite integration) and is denoted by the integral sign \int

If $F(x)$ is an antiderivative of $f(x)$ then

$$
\int f(x) d x=F(x)+C
$$

Note: The \int and the $d x$ are paired together. The notation requires both.

Example:

$$
\int 5 x^{4} d x
$$

Basic Rules of Integration

1. $\int k d x$

Ex: $\int 3 d x$
2. $\int x^{n} d x$

Ex: $\int x^{3} d x$
3. $\int c f(x) d x$

$$
\text { Ex: } \int 9 x^{3} d x
$$

4. $\int[f(x) \pm g(x)] d x$

$$
\text { Ex: } \int\left(3 x^{5}-4 x^{3 / 2}+2 x^{-3}\right) d x
$$

5. $\int e^{x} d x$
6. $\int \ln |x| d x$

Ex: (a) $\int\left(3 x^{4}-5 e^{x}+\frac{1}{x^{2}}-\frac{1}{x}\right) d x$
(b) $\int\left(6 x^{3}-\frac{3}{\sqrt{x}}+\sqrt{x}\right) d x$
(c) $\int \frac{x^{4}-x+1}{x^{2}} d x$
(d) $\int\left(x^{2}+2 x\right)(x-1) d x$

