Geometric Interpretation of the Definite Integral

Recall that, if $f(x)$ is a continuous funtion, the definition of the definite integral is the following:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

If $f(x)$ is also a positive function on the interval $[a, b]$ then this integral gives us the area under $f(x)$ and above the x-axis between a and b.

But what if $f(x)$ is not a positive function on $[a, b]$? What does the definite integral represent?

Geometri Interpretation of the Definite Integral

If $f(x)$ is a continuous function on $[a, b]$ then

$$
\int_{a}^{b} f(x) d x
$$

is equal to the area above $[a, b]$ minus the area below $[a, b]$.

Example: Let $f(x)$ be the funtion with graph

Find:
(a) $\int_{0}^{1} f(x) d x$
(b) $\int_{0}^{0} f(x) d x$
(c) $\int_{0}^{3} \int f(x) d x$
(d) $\int_{0}^{5} f(x) d x$

Example: Let $f(x)=4-x^{2}$
(a) Graph $f(x)$
(b) Evaluate $\int_{0}^{2} f(x) d x$
(c) Evaluate $\int_{2}^{3} f(x) d x$
(d) Evaluate $\int_{0}^{3} f(x) d x$

