Infinite Sequences

In mathematics, when we think of an **Infinite Sequence** (or **sequence** for short) we think of a list of numbers. Some examples of infinite sequences are:

1) 1, 2, 3, 4, 5, ...
2) 4, 3, 2, 1, 0, -1, -2, ...
3)
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, ...
4) 1, $\frac{2}{3}$, $\frac{4}{9}$, $\frac{8}{27}$, ...

We often denote the terms of a sequence by $a_1, a_2, a_3, a_4, \dots$ For short we may write

 $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$

to stand for the entire sequence.

Let's look more closely at the sequence

$\{a_n\}_{n=1}^{\infty}$	=	1	1	1	1	1	1	
		1,	$\overline{2}$,	$\overline{4}$,	$\overline{8}$,	$\overline{16}$	$\overline{32}$,	•••

We can graph this sequence

Written like this we can think of the sequence as a function where

$$f(1) = 1$$
, $f(2) = \frac{1}{2}$, $f(3) = \frac{1}{4}$, $f(4) = \frac{1}{8}$, $f(5) = \frac{1}{16}$, $f(6) = \frac{1}{32}$, ...

So even though we think of a sequence as a list of numbers, the actual definition of sequence is the following.

Definition: An **Infinite Sequence** $\{a_n\}$ is a function whose domain is the set of positive integers. The functional values $a_1, a_2, a_3, a_4, \ldots$ are the **terms** of the sequence, and the term a_n is called the *n***th term** of the sequence.

Note: Sometimes sequences start at numbers other than 1. For example

$${a_n}_{n=3}^{\infty} = a_3, a_4, a_5, \dots$$

Notice that some sequences have a pattern. For Example:

1) 1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$...

2)
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{8}$, $-\frac{1}{6}$...

For short we can write these sequences

Example: Find the *n*th term of each sequence.

1) 2,
$$\frac{3}{\sqrt{2}}$$
, $\frac{4}{\sqrt{3}}$, $\frac{5}{\sqrt{4}}$...

2)
$$-1, \frac{1}{8}, -\frac{1}{27}, \frac{1}{64}...$$

3) 1,
$$-\frac{1}{2}$$
, $\frac{1}{3}$, $-\frac{1}{4}$...

Limit of a Sequence

Let $\{a_n\}$ be a sequence. We say that the sequence $\{a_n\}$ converges and has the limit *L*, written

 $\lim_{n\to\infty}a_n=L$

if the terms of the sequence, a_n , can be made as close to L as we please by taking n sufficiently large. If a sequence is not convergent, it is said to be **divergent**.

Example: Find the following limits (if they exist).

1)
$$\lim_{n\to\infty} \left(-\frac{2}{3}\right)^n$$

2) $\lim_{n\to\infty}\sqrt[7]{n}$

3) $\lim_{n\to\infty} e^{-n}$

4)
$$\lim_{n\to\infty}(-2)^n$$

Limit Properties of Sequences Suppose

 $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}b_n$

converge. Then

a)
$$\lim_{n\to\infty} ca_n$$

b)
$$\lim_{n\to\infty}(a_n\pm b_n)$$

c)
$$\lim_{n\to\infty}a_nb_n$$

d)
$$\lim_{n\to\infty}\frac{a_n}{b_n}$$

Examples: Find limits of the following sequences if they exist:

1)
$$a_n = \frac{5n}{n+3} - \frac{2}{n-1}$$

2)
$$a_n = \frac{3-5^n}{5^n}$$

3)
$$a_n = \frac{n}{n!}$$

4)
$$a_n = \frac{6}{(-5)^n}$$

5)
$$a_n = \frac{3n^2 + 1}{2n^2} - \frac{5}{n^3 + 1}$$

6)
$$a_n = \frac{\sqrt[3]{n+2}}{4\sqrt[3]{n-1}}$$

7)
$$a_n = 5 + \frac{2}{3^n}$$

8)
$$a_n = \frac{3^n - 6}{3^n}$$

9)
$$a_n = \frac{4n}{n!}$$

10)
$$a_n = \frac{4^n}{n!}$$