The Riemann Sum and the Definite Integral

Let's apply this idea to use approximating rectangles fing the area of the region S under a positive function $f(x)$ on the interval $[a, b]$.

The width of the interval $[a, b]$ is $b-a$ so the width of each strip is

$$
\Delta x=
$$

The strips divide the interval into n subintervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots\left[x_{n-1}, x_{n}\right]$. The endpoints are

Using the right endpoints we approximate the area with

$$
R_{n}=
$$

This sum of the areas of approximating rectangles is called a Riemann Sum. As we saw last class, the approximation gets better as n increases. Because this is the case we define the following:

Definition: The Area or the region S that lies under the graph of a positive continuous function f is

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]
$$

It can be shownthat this limit always exists (for a continuous function) and we get the same value if we use

$$
A=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x\right]
$$

In fact, instead of using the left or the right endpoints for the heights of the rectangles we can pick any point we want $x_{i} *$ from each of the subintervals $\left[x_{i-1}, x_{i}\right]$.

Still

Notice that we can write this definition using sigma notation:

$$
\begin{aligned}
A=\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right] \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
\end{aligned}
$$

This limit is called the definite integral.

Definition: If $f(x)$ is a continuous function defined on $[a, b]$, and if $[a, b]$ is divided into n equal subintervals of width $\Delta x=\frac{b-a}{n}$, and if $x_{i}=a+i \Delta x$ is the right endpoint of the subinterval $\left[x_{i-1}, x_{i}\right]$ then the definite integral of f from a to b is the number

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Example: Use the definition of the definite integral to evaluate the following

$$
\text { 1) } \int_{0}^{3}\left(x-2 x^{2}\right) d x
$$

2) $\int_{2}^{5}\left(8 x-x^{2}\right) d x$
3) $\int_{0}^{2}\left(x^{2}+10\right) d x$
4) $\int_{1}^{5}\left(x-4 x^{2}\right) d x$
5) $\int_{-3}^{0}\left(4 x^{2}-5 x-1\right) d x$
6) $\int_{0}^{4}\left(x^{3}-1\right) d x$
