Name: Student ID:

Test 3

This test is graded out of 45 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1.

a. (4 marks) Show that the series

$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$

is convergent

b. (1 mark) Deduce that

$$\lim_{n\to\infty}\frac{n^n}{(2n)!}=0.$$

Question 2. (5 marks) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=1921}^{\infty} \frac{2^n (x-7)^n}{\sqrt{n-17}}$$

Question 3. (5 marks) Determine whether the series is convergent or divergent. If it is convergent find its sum.

$$\sum_{n=3}^{\infty} \ln\left(\frac{\sec\left(\frac{\pi}{n}\right)}{\sec\left(\frac{\pi}{n+1}\right)}\right)$$

Question 4. (5 marks) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=4}^{\infty} \frac{(-1)^n \tan\left(\frac{\pi}{n}\right)}{1 + (1.1)^n}$$

Question 5. (5 marks) Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{n! \tan\left(\frac{1}{n}\right)}{(n-1)!}$$

Question 6.

a. (1 mark) Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$\left\{\frac{9}{\pi}, \frac{16}{\pi^2}, \frac{25}{\pi^3}, \frac{36}{\pi^4}, \frac{49}{\pi^5}, \dots\right\}_{n=1}^{\infty}$$

- b. (1 mark) Show that a_n is monotonic.
- c. (1 mark) Show that a_n is bounded.
- d. (1 mark) By which theorem can we conclude that a_n converges.
- e. (1 mark) Determine the limit of a_n as $n \to \infty$.

Question 7. (5 marks) Find the values of $\kappa > 0$ for which the series is convergent.

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{\kappa}}$$

Question 8. (5 marks) What is the value of ζ if

$$\sum_{n=1}^{\infty}\sqrt{2}(\ln\zeta)^n = \pi$$

Question 9. (5 marks) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1871}^{\infty} \frac{(-1)^n (n+1)}{\sqrt{n^4 - 2n^2 + 1}}$$

Bonus Question.

- a. (1 mark) State the $K(\varepsilon)$ definition of the limit of a sequence.
- b. (4 marks) Use the $K(\varepsilon)$ definition of the limit to prove the squeeze theorem.