5.3 Evaluating Definite Integrals

We now have two notations that look similar but mean different things. We have to be careful not to confuse the two.

$$\int_{a}^{b} f(x) \mathrm{d}x$$

- this is a definite integral
- you are finding the net area
- the final answer should be a number!

$$\int f(x) \mathrm{d}x$$

- this is the indefinite integral
- you are finding all antiderivatives of f(x)
- the final answer is function!

Example:

a) Use the limit definition of the definite integral to evaluate $\int_{-1}^{2} (3x^2 - 2x + 1) dx$

b) Find the following antiderivative $F(x) = \int (3x^2 - 2x + 1) dx$

c) Just for fun, find F(-1) and F(2).

Evaluation Theorem (the Fundamental Theorem of Calculus part 2)

If f is a continuous function on the interval [a,b] then

where F is <u>any</u> antiderivative of f.

First let's see how it works, then let's look at why it works.

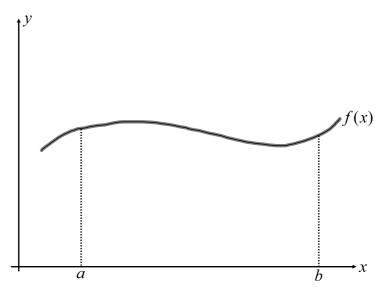
Example: Evaluate $\int_0^1 \frac{1}{x^2} dx$

To see why it works we need to define a new function.

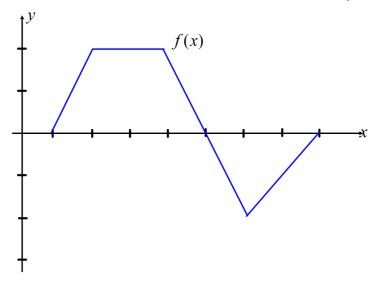
Let f(x) be a continuous function on the interval [a,b], like in the statement of the theorem. We define the area function, A(x), as follows:

$$A(x) = \int_{a}^{x} f(x) dx$$
 for $a \le x \le b$

So for any x-value that we plug into the function, it tells us the net area from a to x.



Example: Let f(x) be the function below and let $A(x) = \int_1^x f(x) dx$ for $1 \le x \le 8$



a) Find A(2)

b) Find A(5)

c) Find A(6)

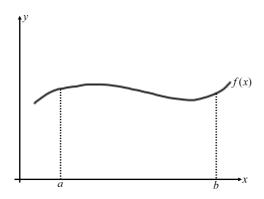
d) Find A(8)

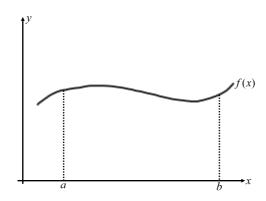
Back to the more general situation:

f(x) is a continuous function on the interval [a,b] and

$$A(x) = \int_{a}^{x} f(x) dx$$
 for $a \le x \le b$

Let's look at a small strip of area





When applying the evaluation theorem we use the notation

$$F(x)|_a^b = F(b) - F(a)$$
 or $[F(x)]_a^b = F(b) - F(a)$

Examples: Evaluate the following definite integrals.

a)
$$\int_0^{\pi/3} \cos(\theta) d\theta$$

b)
$$\int_{1}^{4} \frac{(x-4)(x-2)}{x^{2}} dx$$

$$c) \int_{\pi/4}^{\pi/3} \tan^2 \theta \ d\theta$$

•

d)
$$\int_{1}^{9} \frac{2t^2 + t^2 \sqrt{t} - 1}{t^2} dt$$

$$\int_0^{1/2} \left(3x^2 - 4x + \frac{1}{\sqrt{1 - x^2}} \right) dx$$

•