Improper Integrals

So far, we have solved the area problem for a continuous function f on the
interval [a,b]. We've seen that we can find the net area by taking a definite
integral, for example:
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Does it make sense to talk about the area on an unbounded interval? This
would seem to correspond to a definite integral on an unbounded interval.
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Let's consider the area under 1/x2 from 1 to some value t.

A(t)=

Now let's see what happens as b get's larger.
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Let's try the same thing with the function 1/x.

We can see that when we are looking for/ f(x)dx we should find
a

lim t f(x)dx
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Definition: An integral is called an improper integral (of type I) if one of the
limits of integration is infinite:

a) If f(x) is continuous on [a, co)
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/ f(x)dr = lim f(x)dx
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provided this limit exists as a finite number.

b) If f(x) is continuous on (—oo, b]
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/ f(x)dr = lim f(x)dz
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provided this limit exists as a finite number.

c) If f(x) is continuous on (—oo, c©)

/_O:O f(x)dz = /_COO f(x)ds + /COO f(x)da

where c is any number.

If the limits exist we say that the integrals converge, otherwise we say that
they diverge. Both inetgrals on the right in ¢) must converge for us to say
that the integral on the left converges.



Examples: Evaluate the following improper integrals
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Remember, the fundamental theorem of calculus part 2 (evaluation theorem)
requires the function be continuous. This means that we can't use the FTC2
directly on an integral that looks like
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since the integrand is not continuous at 0. We would also call this an
improper integral.

Improper integrals:




Definition: An integral is called an improper integral (of type Il) if the
integrand has a discontinuity in the interval of integration.

a) If f is continuous on CL b) and discontinuous at p, then

/f de = lim :f@)dx
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if this limit exists.

b) If f is continuous on (a b and discontinuous at @, then
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if this limit exists.

Again, if the limit exists we say the integral is convergent, otherwise we say it
is divergent.

c) If f has a discontinuity at C and @ << ¢ << b then

/f da:—/f d:z:+/f \da

(Both integrals on the right must converge in order for the integral on the left to
converge).



Examples: Find the following
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