Note: In what follows a can represent a (finite) real number or ∞ or $-\infty$.

If
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$ then $\lim_{x \to a} \frac{f(x)}{g(x)}$

is called an independent form of type $\,0/0$.

Similarly, if
$$\lim_{x \to a} (x) = \pm \infty$$
 and $\lim_{x \to a} g(x) = \pm \infty$ then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is called an independent form of type ∞ / ∞ .

In either case the limit may or may not exist. For limits of this type we can use I'Hôpital's Rule.

L'Hôpital's Rule

Suppose f and g are differentiable functions and that

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is an indeterminate form of the type $0/0\,\, \text{or}\,\,\infty/\infty.$ Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that the limit on the right exists (or is $\pm\infty$).

Examples: Find the following limits (if they exist).

1)
$$\lim_{x \to 0} \frac{\cos x - 1}{e^x - 1}$$

$$2) \lim_{x \to 0} \frac{e^x}{1 - \cos x}$$

3)
$$\lim_{x \to \infty} \frac{3\ln(5x+3)}{2\ln(x+4)}$$

Remember, if we don't have and indeterminate form of the type 0/0 or ∞/∞ then we can't use l'Hôpital's rule. We can, in some cases, rearrange our expression to give us one of these indeterminate forms.

Examples: Find the following limits (if they exist).

1) $\lim_{x \to 0^+} x \ln x$

2)
$$\lim_{x \to (\pi/2)^{-}} (\sec x - \tan x)$$

Indeterminate Powers

Several indeterminate forms arise from the limit $\lim_{x \to a} [f(x)]^{g(x)}$

1)
$$\lim_{x \to a} f(x) = 0$$
 and $\lim_{x \to a} g(x) = 0$ type 0^0
2) $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = 0$ type ∞^0
3) $\lim_{x \to a} f(x) = 1$ and $\lim_{x \to a} g(x) = \pm \infty$ type 1^∞

We can evaluate these types of limits using the natural logarithm function and l'Hôpital's rule.

Example:

 $\lim_{x \to 0^+} (1 + \sin 4x)^{\cot x}$