Taylor and Maclaurin Series

In the previous section we saw that

$$J_0 = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} = 1 - \frac{x^2}{4} + \frac{x^4}{64} - \frac{x^6}{2304} + \dots$$

is a function whose domain is ${\mathbb R}$.

Are there other functions that we can write as a power series? That is, given a function f(x), can we find constants $c_0, c_1, c_2, c_3, \ldots$ so that

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 \dots = \sum_{n=0}^{\infty} c_n(x-a)^n$$
?

Suppose it is possible. What would the constants be?

$$f(a) =$$

It turns out that the derivative of a power series is the term by term derivative, that is

$$f'(x) =$$

and so

$$f'(a) =$$

continuing in this way

Theorem: If f has a power series representation (expansion) at a, that is if

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$
 on $|x - a| < R$

then its coefficients are given by

$$c_n = \frac{f^{(n)}(a)}{n!}$$

We see that we would get

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f^{(3)}(a)}{3!} (x-a)^3 + \dots$$

This is called the **Taylor series of the function f at a**.

For the special case where $a \equiv 0$ the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f^{(3)}(0)}{3!} x^3 + \dots$$

which is called the **Maclaurin Series of** f(x).

Remember, this is all assuming f is equal to its Taylor series expansion, there are functions that are not equal to their Taylor series.

Example: Find the Maclaurin series of the function $\,f(x)=e^x\,$ and its radius of convergence.

Example: Find the Taylor series $\mbox{for} f(x) = e^x \mbox{at } a = 2.$

Example: Find the Maclaurin series for $\sin\,x$.

Example: Find the Taylor series for $f(x) = \ln x \; \text{ at } a = 2$.

Example: Find the Maclaurin series for $f(x)=(1+x)^k$ (where ${\bf k}$ is a real number).

Example: Find the Taylor series for $f(x)=x^{\frac{3}{4}}$ at a=1.