The Integral and Comparison Tests

It turns out that there is a very close relationship between series ; “ and the
improper integral / f(x)dz Where f(n) = a,, and f(x) is positive and
decreasing. -

Let's examine this relationship:






Theorem: The Integral Test

Supposefis a continuous, positive, decreasing function on [1,00) and let
an = f(n). Then the series > «. is convergent if and only if the improper
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integral f(x)dz is convergent. In other words:
1

1) If /l f(x)dz is convergent then Zan is convergent.
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2) If/1 f(x)dz is divergent then Z an, 1s divergent.
n=1

Note: It is not necessary to start the integral test at n=1. For example, to test
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Example: Determine whether the series E Inn diverges or converges.
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Example: Is the series E ne” " convergent or divergent?
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Example: For what values of p is the series Z oy convergent.

n=1



p-series
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The p-series Z o is convergent if p > 1 and divergentif p < 1.
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These series will be useful when we use the comparison tests.

The Comparison Test

Suppose that > _an and Z by are series with positive terms.

a) If > by is convergent and a,, < by, for all n then >_ ax is also
convergent.

b) If > bnis convergent and @n, = by for all n then >_ax is also
convergent.



Examples: Determine whether the following series converge or diverge:
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The Limit Comparison Test

Suppose that Z an and Z by, are series with positive terms. If
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where c is a finite number and ¢ > O, then either both series converge or
both diverge.

Example: Determine whether the following series converge or diverge.
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