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Definition of Vector Space
We shall study structures with two operations, an addition and a scalar multiplication, that are subject to some simple conditions. We
will reflect more on the conditions later but on first reading notice how reasonable they are. For instance, surely any operation that can
be called an addition (e.g., column vector addition, row vector addition, or real number addition) will satisfy conditions (1) through (5)
below.

1 Definition and Examples
Definition 1.1. A vector space (over R) consists of a set V along with two operations ‘+’ and ‘·’ subject to the conditions that for all
vectors~v,~w,~u ∈V and all scalars r,s ∈ R:

1. the set V is closed under vector addition, that is,~v+~w ∈V
2. vector addition is commutative,~v+~w = ~w+~v
3. vector addition is associative, (~v+~w)+~u =~v+(~w+~u)
4. there is a zero vector~0 ∈V such that~v+~0 =~v for all~v ∈V
5. each~v ∈V has an additive inverse ~w ∈V such that ~w+~v =~0
6. the set V is closed under scalar multiplication, that is, r ·~v ∈V
7. addition of scalars distributes over scalar multiplication, (r+ s) ·~v = r ·~v+ s ·~v
8. scalar multiplication distributes over vector addition, r · (~v+~w) = r ·~v+ r ·~w
9. ordinary multipication of scalars associates with scalar multiplication, (rs) ·~v = r · (s ·~v)

10. multiplication by the scalar 1 is the identity operation, 1 ·~v =~v.

Remark. The definition involves two kinds of addition and two kinds of multiplication, and so may at first seem confused. For instance,
in condition (7) the ‘+’ on the left is addition of two real numbers while the ‘+’ on the right is addition of two vectors in V . These
expressions aren’t ambiguous because of context; for example, r and s are real numbers so ‘r+s’ can only mean real number addition. In
the same way, item (9)’s left side ‘rs’ is ordinary real number multiplication, while its right side ‘s ·~v’ is the scalar multipliction defined
for this vector space.

The best way to understand the definition is to go through the examples below and for each, check all ten conditions. Especially important
are the closure conditions, (1) and (6). They specify that the addition and scalar multiplication operations are always sensible — they are
defined for every pair of vectors and every scalar and vector, and the result of the operation is a member of the set.

Example 1.1. The set R2 is a vector space if the operations ‘+’ and ‘·’ have their usual meaning.(
x1
x2

)
+

(
y1
y2

)
=

(
x1 + y1
x2 + y2

)
r ·
(

x1
x2

)
=

(
rx1
rx2

)
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Example 1.2. This subset of R3 that is a plane through the origin

P =


x

y
z

∣∣∣ x+ y+ z = 0


is a vector space if ‘+’ and ‘·’ are interpreted in this way.x1

y1
z1

+

x2
y2
z2

=

x1 + x2
y1 + y2
z1 + z2

 r ·

x
y
z

=

rx
ry
rz


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Example 1.3. Let V be the set of all pairs (x,y) where x,y ∈ R and where addition and scalar multiplication is defined as:

(x,y)+(x′, y′) = (y+ y′, x+ x′) r · (x, y) = (0, ry).

Is V a vector space?
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Example 1.4. The singleton set
{~0}

is a vector space under the operations
~0+~0 =~0 r ·~0 =~0.

Definition 1.2. A one-element vector space is a trivial space.

Example 1.5. Consider P3 = {a0 +a1x+a2x2 +a3x3 | a0, . . . ,a3 ∈ R}, the set of polynomials of degree three or less (in this book,
we’ll take constant polynomials, including the zero polynomial, to be of degree zero). It is a vector space under the operations

(a0 + a1x + a2x2 + a3x3) + (b0 + b1x + b2x2 + b3x3) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + (a3 + b3)x3

and
r · (a0 +a1x+a2x2 +a3x3) = (ra0)+(ra1)x+(ra2)x2 +(ra3)x3

(the verification is easy).

Example 1.6. The set M2×2 of 2×2 matrices with real number entries is a vector space under the natural entry-by-entry operations.(
a b
c d

)
+

(
w x
y z

)
=

(
a+w b+ x
c+ y d + z

)
r ·
(

a b
c d

)
=

(
ra rb
rc rd

)
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Example 1.7. The set of polynomials with real coefficients

{a0 +a1x+ · · ·+anxn | n ∈ N and a0, . . . ,an ∈ R}

makes a vector space when given the natural ‘+’

(a0 +a1x+ · · ·+anxn)+(b0 +b1x+ · · ·+bnxn) = (a0 +b0)+(a1 +b1)x+ · · ·+(an +bn)xn

and ‘·’
r · (a0 +a1x+ . . .+anxn) = (ra0)+(ra1)x+ . . .+(ran)xn

Definition 1.3. R∞ is the vector space of infinite sequence of real numbers

R∞ = {(a0,a1,a2, . . . ,an, . . .) | ai ∈ R}

with the following operations

~u+~v = (u0,u1,u2, . . . ,un, . . .)+(v0,v1,v2, . . . ,vn, . . .) = (u0 + v0,u1 + v1,u2 + v2, . . . ,un + vn, . . .)

and
r · (u0,u1,u2, . . . ,un, . . .) = (ru0,ru1,ru2, . . . ,run, . . .).
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Example 1.8. Is set V = R2 under the following operations

~u+~v = (u1,u2)+(v1,v2) = (u1 + v1,u2 + v2) r ·~u = r · (u1,u2) = (ru1,0)

a vector space?

Example 1.9. The set { f | f : R→ R} of all real-valued functions of one real variable is a vector space under these

( f1 + f2)(x) = f1(x)+ f2(x) (r · f )(x) = r f (x)
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Example 1.10. The set V = {(x1, x2) | x1, x2 ∈ R}. of all real valued ordered pair is a vector space under these

(x1, x2)+(y1, y2) = (x1 + y1 +1, x2 + y2 +1). r · (x1, x2) = (rx1 + r−1, rx2 + r−1).
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Theorem 1.1. In any vector space V , for any~v ∈V and r ∈ R, we have
(1) 0 ·~v =~0,
(2) (−1 ·~v)+~v =~0,
(3) r ·~0 =~0, and
(4) if r ·~v =~0 then~v =~0 or r = 0.
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2 Subspaces and Spanning Sets
We saw that the plane through the origin is a planar subset of R3. There, the vector space R3 contains inside it another vector space, the
plane.

Definition 2.1. For any vector space, a subspace is a subset that is itself a vector space, under the inherited operations.

Example 2.1.

P = {

x
y
z

 | x+ y+ z = 0}

is a subspace of R3. As required by the definition the plane’s operations are inherited from the larger space, that is, vectors add in P as
they add in R3 x1

y1
z1

+

x2
y2
z2

=

x1 + x2
y1 + y2
z1 + z2


and scalar multiplication is also the same as in R3. To show that P is a subspace we need only note that it is a subset and then verify
that it is a space. We have already checked that P satisfies the conditions in the definition of a vector space.

Example 2.2. The x-axis in R2 is a subspace, where the addition and scalar multiplication operations are the inherited ones.(
x1
0

)
+

(
x2
0

)
=

(
x1 + x2

0

)
r ·
(

x
0

)
=

(
rx
0

)
As in the prior example, to verify directly from the definition that this is a subspace we simply check that it is a subset and then check that
it satisfies the conditions in definition of a vector space. For instance the two closure conditions are satisfied: adding two vectors with
a second component of zero results in a vector with a second component of zero and multiplying a scalar times a vector with a second
component of zero results in a vector with a second component of zero.

Example 2.3. Another subspace of R2 is its trivial subspace. {(
0
0

)}
Any vector space has a trivial subspace {~0 }. At the opposite extreme, any vector space has itself for a subspace.

Note. Subspaces of R2 are: R2, lines through the origin, trivial subspace.

Example 2.4. Vector spaces that are not Rn’s also have subspaces. The space of cubic polynomials {a+bx+ cx2 +dx3 | a,b,c,d ∈ R}
has a subspace comprised of all linear polynomials {m+nx | m,n ∈ R}.

Example 2.5. Another example of a subspace that is not a subset of an Rn followed the definition of a vector space. The space of all
real-valued functions of one real variable { f | f : R→ R} has the subspace of functions satisfying the restriction (d2 f/dx2)+ f = 0.

Example 2.6. The definition requires that the addition and scalar multiplication operations must be the ones inherited from the larger
space. The set S = {1} is a subset of R1. And, under the operations 1+ 1 = 1 and r · 1 = 1 the set S is a vector space, specifically, a
trivial space. However, S is not a subspace of R1 because those aren’t the inherited operations, since of course R1 has 1+1 = 2.

Example 2.7. Being vector spaces themselves, subspaces must satisfy the closure conditions. The set R+ is not a subspace of the vector
space R1 because with the inherited operations it is not closed under scalar multiplication: if~v = 1 then −1 ·~v 6∈ R+.

The only way that a subset can fail to be a subspace, if it is nonempty and uses the inherited operations, is if it isn’t closed.

Theorem 2.1 (Subspace Test). For a nonempty subset W of a vector space V , under the inherited operations is a vector space if and
only if

Closed under addition: For all~u,~v ∈W,~u+~v ∈W.

Closed under scalar multiplication: For all r ∈ R and all~u ∈W, k~u ∈W.
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Remark. Rn for any n ∈ N is a vector space with the usual vector addition and scalar multiplication.

Example 2.8. Determine which subsets are a subspace of R3: W1 = {(x,0,y) | x,y ∈ R}, W2 = {(x,1,z) | x,z ∈ R}.

Note. Subspaces of R3 are: R3, planes through the origin, lines through the origin, trivial subspace.
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Remark. Mn×n for any n ∈ N is a vector space with the usual matrix addition and scalar matrix multiplication.

Example 2.9. Show that L is a subspace of the 2×2 matrices M2×2.

L =

{(
a 0
b c

)
| a+b+ c = 0

}

Remark. Pn = {a0 + a1x+ a2x2 + · · ·+ anxn | ai ∈ R} for any n ∈ N is a vector space with the usual polynomial addition and scalar
polynomial multiplication.

Example 2.10. Determine which subsets are a subspace of P3:

W1 =

{
p(x) | p(x) ∈ P3 and

∫ 1

0
p(x) dx = 1

}
, W2 =

{
p(x) | p(x) ∈ P3 and p′(π) = 0

}
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Theorem 2.2. If Ax = 0 is a homogenous linear system of m equations in n unknowns, then the set of solution vectors is a subspace of
Rn.

Example 2.11. Express the subspace W =
{

x | Ax = 0 and x ∈ R3
}

of R3 as a parametric equation where

A =

 1 −1 0
2 1 1
−1 4 1


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Definition 2.2. A vector ~w is a linear combination of a set S = {~s1,~s2, . . . ,~sn} if it can be expressed in the form

~w = c1~s1 + c2~s2 + · · ·+ cn~sn

where ci ∈ R.

Example 2.12. Any vector (a,b,c) ∈ R3 is expressible as a linear combination of the standard basis vectors

(a,b,c) = a~i+b~j+ c~k

Example 2.13. Show that ~w = (3,−4,2) is a linear combination of~u = (4,−3,3) and~v = (1,1,1)

Example 2.14. Determine if p(x) = 2−1x is a linear combination of p1(x) = 2+ x and p2(x) = 4+2x.

Example 2.15. Determine if X is a linear combination of A, B, C where

X =

[
2 −1
3 1

]
, A =

[
2 −1
3 0

]
, B =

[
1 2
3 −1

]
, C =

[
−4 −3
−9 3

]
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Definition 2.3. The span of a nonempty subset S of a vector space is the set of all linear combinations of vectors from S.

span(S) = {c1~s1 + · · ·+ cn~sn | c1, . . . ,cn ∈ R and~s1, . . . ,~sn ∈ S}

The span of the empty subset of a vector space is its trivial subspace.

Theorem 2.3. In a vector space, the span of any subset is a subspace. In addition, the span of a subset of a vector space is the smallest
subspace containing all vectors of the subset.
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Example 2.16. Let W = span{~u,~v} where~u = (1,0,0) and~v = (0,1,0). Is (1,1,1) in W? What about (2,3,0)?

Example 2.17. Express the subspace W =
{

x | Ax = 0 and x ∈ R3
}

of R3 as a span of a set of vectors where

A =

 1 −1 1
2 −2 2
−1 1 −1


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Example 2.18. Determine whether S = {(2,1,0), (−1,3,1), (1,1,1)} spans R3.

Example 2.19. Determine whether S =
{

1+ x+ x2, 1− x2
}

spans P2.
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Example 2.20. Find the conditions on the coefficient of p(x) = a0 +a1x+a2x2 such that p(x) ∈ span({1+ x+ x2, 1+2x+3x2})

Theorem 2.4. Let S and S′ be subsets of a vector space V . If every vector in S is expressible as a linear combination of the vectors in
S′ then span(S) is a subspace of span(S′). If in addition every vector of S′ is expressible as a linear combination of the vectors in S then
span(S) = span(S′).

Example 2.21. Let S = {M1,M2} and S′ = {M3,M4} where

M1 =

[
2 −1
3 0

]
, M2 =

[
0 1
1 0

]
, M3 =

[
4 −1
7 0

]
, M4 =

[
0 2
2 0

]
Is span(S) = span(S′)?
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Example 2.22. The picture below shows the subspaces of R3 that we now know of, the trivial subspace, the lines through the origin,
the planes through the origin, and the whole space (of course, the picture shows only a few of the infinitely many subspaces). In the next
section we will prove that R3 has no other type of subspaces, so in fact this picture shows them all.
That picture describes the subspaces as spans of sets with a minimal number of members. Note that the subspaces fall naturally into
levels — planes on one level, lines on another, etc. — according to how many vectors are in the minimal-sized spanning set.

{x

1
0
0

+ y

0
1
0

+ z

0
0
1

}
����������

{x

1
0
0

+ y

0
1
0

}
�����

{x

1
0
0

+ z

0
0
1

}
��

{x

1
1
0

+ z

0
0
1

} · · ·

�
�

������

{x

1
0
0

}
A
A

{y

0
1
0

}
HHH

H

{y

2
1
0

}
��

{y

1
1
1

} · · ·
XXXXXXXXXXXX

PPPPPPPP

H
HHH

AA

{

0
0
0

}
The line segments between levels connect subspaces with their superspaces.
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3 Linear Independence
Definition 3.1. A nonempty subset S = {~s1, ~s2, . . . , ~sn} of a vector space is linearly independent if

~0 = c1~s1 + c2~s2 + · · ·+ cn~sn

only has the trivial solution, that is, c1 = c2 = . . .= cn = 0. Otherwise it is linearly dependent.

Example 3.1. Determine if S = {~u, ~v, ~w} where

~u = (2,1,3), ~v = (1,3,1), ~w = (3,4,4)

is linearly independent.

Example 3.2. Determine if S = {M1,M2,M3} where

M1 =

[
1 0
2 0

]
, M2 =

[
2 1
3 1

]
, M3 =

[
−1 −3
−3 4

]
is linearly independent.
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Example 3.3. Suppose S = {~v1, ~v2, ~v3} is linearly independent. Are the vectors

~v1−~v2, ~v3 +~v2, ~v1−~v3

linearly independent?

Theorem 3.1. The polynomials
1, x, x2, . . . , xn

form a linearly independent set.
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Example 3.4. Determine if S = {p1(x), p2(x), p3(x)} where

p1(x) = 1−2x+ x2, p2(x) = 3+2x2, p3(x) = 1+ x+ x2

is linearly independent.

Theorem 3.2. A subset S = {~s1,~s2, . . . ,~sn} of a vector space is linearly dependent if and only if some~si is a linear combination of the
vectors S−{~si}.
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Corollary 3.3. It follows, that subset S = {~s1,~s2, . . . ,~sn} of a vector space is linearly independent if and only if no ~si is a linear
combination of the vectors S−{~si}.

Example 3.5. What can be said about the linear independence of the following set S =
{
~s1, ~s2, . . . , ~sn, ~0

}
?

Example 3.6. What can be said about the linear independence of the following set S = {~s1}?

Example 3.7. What can be said about the linear independence of the following set S = {~s1, ~s2}?

Note. Geometric Interpretation:
Two vectors in R2 and R3 are linearly independent if and only if the vectors do not lie on the same line (when their initial points are at
the origin).

Three vectors in R3 are linearly independent if they do not lie on the same plane (when their initial points are at the origin).
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4 Coordinates and Basis
Definition 4.1. A basis B for a vector space V is a sequence of vectors {~b1, ~b2, . . . , ~bn} that is linearly independent and that spans the
vector space V .

Definition 4.2. For R2 the standard (or natural) basis is {~i, ~j}.
For R3 the standard (or natural) basis is {~i, ~j, ~k}.
For Rn the standard (or natural) basis is {~e1 = (1, 0, 0, . . . , 0), ~e2 = (0, 1, 0, . . . ,0), ~e3 = (0, 0, 1, . . . ,0), . . . ,~en = (0, 0, 0, . . . ,1)}

Example 4.1. Determine if B = {~v1, ~v2,~v3} where

~v1 = (1,2,1), ~v2 = (2,9,0), ~v3 = (3,3,4)

is a basis for R3
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Theorem 4.1. If B = {~b1, ~b2, . . . , ~bn} is linearly independent then B is a basis for V = span(B).

Example 4.2. Determine if B = {cos2 x, sin2 x, cos2x} is a basis for the vector space V = span{B}.

Definition 4.3. For Pn the standard (or natural) basis is {1, x, x2, . . . , xn}.

Example 4.3. The space of finite-degree polynomials {a0 +a1x+ · · ·+anxn | n ∈ N and a0, . . . ,an ∈ R} has a basis with infinitely many
vectors {1, x ,x2 , . . .}.

Example 4.4. Determine if B = {1+ x+ x2, x+ x2, x2} is a basis for the vector space P2.
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Definition 4.4. For M2×2 the standard (or natural) basis is{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
For M3×3 the standard (or natural) basis is

1 0 0
0 0 0
0 0 0

 ,
0 1 0

0 0 0
0 0 0

 ,
0 0 1

0 0 0
0 0 0

 ,
0 0 0

1 0 0
0 0 0

 ,
0 0 0

0 1 0
0 0 0

 ,
0 0 0

0 0 1
0 0 0

 ,
0 0 0

0 0 0
1 0 0

 ,
0 0 0

0 0 0
0 1 0

 ,
0 0 0

0 0 0
0 0 1


For Mn×n the standard (or natural) basis has n2 vectors.

Example 4.5. Find a basis for the vector space V =
{

A | A ∈M2×2 and AT = A
}

with the usual matrix addition and matrix scalar
multiplication.
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Theorem 4.2 (Uniqueness of Basis Representation). In any vector space V , a subset B is a basis if and only if each vector in the vector
space V can be expressed as a linear combination of elements of the subset B in one and only one way.

Definition 4.5. In a vector space with basis B the coordinate vector of~v relative to B (or representation of~v with respect to B) is a vector
of the coefficients used to express~v as a linear combination of the basis vectors:

RepB(~v) = (~v)B = (c1, c2, . . . , cn)

where B = {~b1, ~b2, . . . , ~bn} and~v = c1~b1 + c2~b2 + . . .+ cn~bn.

Remark. The definition of the basis requires that a basis be a sequence because without that we couldn’t write these coordinates in a
fixed order.

Example 4.6. Find the coordinate vector of~v = (3,4) relative to the basis B = {~i, ~j}.
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Example 4.7. Find the coordinate vector of~v = (3,4) relative to the basis B = {~b1, ~b2} where

~b1 = (2,−4) ~b2 = (3,2)

Example 4.8. Find a basis B for the vector space V =
{

A | A ∈M3×3 and AT =−A
}

with the usual matrix addition and matrix scalar
multiplication. Find the coordinate vector of  0 1 −2

−1 0 −3
2 3 0


relative to the basis B.
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Example 4.9. Let W = {p(x) = a0 +a1x+a2x2 | p′(1) = 0} be a subspace of P2. Find a basis B for W. Find the coordinate vector of
p(x) =−4− x+ 1

2 x2 relative to the basis B.
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5 Dimension
The previous subsection defines a basis of a vector space and shows that a space can have many different bases. So we cannot talk about
“the” basis for a vector space. True, some vector spaces have bases that strike us as more natural than others. We cannot, in general,
associate with a space any single basis that best describes it.
We can however find something about the bases that is uniquely associated with the space. This subsection shows that any two bases for
a space have the same number of elements. So with each space we can associate a number, the number of vectors in any of its bases.
Before we start, we first limit our attention to spaces where at least one basis has only finitely many members.

Definition 5.1. A vector space is finite-dimensional if it has a basis with only finitely many vectors.

One space that is not finite-dimensional is R∞ this space is not spanned by any finite subset.

Lemma 5.1 (Exchange Lemma). Assume that B= {~b1,~b2, . . . ,~bn} is a basis for a vector space, and that for the vector~v the relationship
~v = c1~b1 + c2~b2 + · · ·+ cn~bn has ci 6= 0. Then exchanging~bi for~v yields another basis for the space.

Theorem 5.2. In any finite-dimensional vector space, all bases have the same number of elements.

Definition 5.2. The dimension of a vector space is the number of vectors in any of its bases.

Example 5.1. Any basis for Rn has n vectors since the standard basis

{~e1 = (1, 0, 0, . . . , 0), ~e2 = (0, 1, 0, . . . ,0), ~e3 = (0, 0, 1, . . . ,0), . . . ,~en = (0, 0, 0, . . . ,1)}

has n vectors. Thus, this definition of ‘dimension’ generalizes the most familiar use of term, that Rn is n-dimensional.

Example 5.2. The space Pn of polynomials of degree at most n has dimension n+ 1. We can show this by exhibiting any basis —
{1, x, . . . , xn} comes to mind — and counting its members.

Example 5.3. The space Mn×n of n×n matrices has dimension n2 since it has standard basis of n2 vectors as previously discussed.

Example 5.4. The space of functions {a · cosθ +b · sinθ | a,b ∈ R} of the real variable θ has dimension 2 since this space has the
basis {cosθ ,sinθ}.

Example 5.5. A trivial space is zero-dimensional since its basis is empty.
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Example 5.6. Find a basis and determine the dimension of the subspace of R5 determined by the solution vectors of the following
homogeneous system.

x1 − 2x2 + x3 − 3x4 + x5 = 0
−x1 − x2 + x4 = 0
−2x1 + 3x2 + x3 − x5 = 0

Corollary 5.3. No linearly independent set can have a size greater than the dimension of the enclosing space.

Example 5.7. Verify the above corrollary by showing that S = {1, 1+x, 1+x+x2, x+x2} is linearly dependent in its enclosing space
P2.
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Corollary 5.4. Any linearly independent set can be expanded to make a basis.

Example 5.8. Expand the set S = {(1, 1, 1,1,1)} to make a basis of the subspace of R5 defined by W = {(a,b,a,b,c) | a,b,c ∈ R}.

Corollary 5.5. Any spanning set can be shrunk to a basis.

Example 5.9. Shrink the set S = {M1, M2, M3, M4, M5} such that it becomes a basis for span(S) where

M1 =

[
1 0
−2 0

]
, M2 =

[
2 1
3 1

]
, M3 =

[
−1 −3
4 3

]
, M4 =

[
1 2
−5 4

]
, M5 =

[
3 −1
−6 5

]
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Corollary 5.6. In an n-dimensional space, a set composed of n vectors is linearly independent if and only if it spans the space.

Example 5.10. Find a basis for P3 containing the linearly independent set S = {1+ x, 1+ x2}

Example 5.11. Let

A =

[
1 1
0 0

]
and V = {X | X ∈M2×2 and AX = X} Find a basis of V containing A. Find a basis of V not containing A. What is the dimension of V .
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