Name:

Quiz 5

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §1.7 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. If A and B are $n \times n$ matrices such that A + B is symmetric, then A and B are symmetric.

Question 2. §1.7 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. If A^2 is a symmetric matrix, then A is a symmetric matrix.

Question 3. §1.6 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. If A and B are row equivalent matrices, then the linear systems Ax = 0 and Bx = 0 have the same solution set.

Question 4. §1.6 #TF (2 marks) Determine whether the statement is true or false, and justify your answer.

If *A* is an $n \times n$ matrix and *S* is an $n \times n$ invertible matrix, then if *x* is a solution to the linear system $(S^{-1}AS)x = b$, then *Sx* is a solution to the linear system Ay = Sb.

Question 5. §1.6 #TF (2 marks) Determine whether the statement is true or false, and justify your answer. Let A be an $n \times n$ matrix. The linear system Ax = 4x has a unique solution if and only if A - 4I is an invertible matrix.

Question 6. (3 marks) Prove: If E_i are elementary matrices and $E_n \cdots E_2 E_1 A$ is invertible then A is invertible.

Question 7. (3 marks) Given a matrix A which satisfy $A^3 + 3A^2 + A + I = 0$ find the inverse of A in terms of A and the identity.