Dawson College: Linear Algebra: 201-NYC-05-S06: Winter 201	Dawson College	: Linear Al	gebra: 201	-NYC-05-S06:	Winter 2016
---	----------------	-------------	------------	--------------	-------------

Name:			

Test 2

This test is graded out of 40 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Given

$$A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & -4 & 5 & 6 \\ -7 & 0 & 0 & 0 \\ 8 & 10 & 11 & 0 \end{bmatrix}.$$

- a. (5 marks) Evaluate det(A).
- b. (3 marks) If B is a 4×4 matrix and $det(2BA + Badj(A)A^2) = 0$ then B singular.

Question 5. (3 marks) Prove or disprove: If a system of linear equations Ax = b has n equations and n variables has infinitely many solutions then Ax = c has infinitely many solutions for all $n \times 1$ matrix c.

Question 6. (5 marks) Given

$$A = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 & \frac{3}{a} & \frac{3}{4} \\ 0 & 0 & 0 & \frac{1}{c} \\ 0 & \frac{1}{c} & 0 & \frac{1}{c} \\ \frac{4}{d} & 0 & 0 & \frac{4}{d} \end{bmatrix}$$

If det(B) = 5 then determine det(A).

Question 7. Given $\vec{u}, \vec{v} \in \mathbb{R}^2$ where $\vec{u} = (1,1), ||\vec{v}|| = 1$ and the angle between \vec{u} and \vec{v} is $\pi/4$.

- a. (2 marks) Determine $\vec{u} \cdot \vec{v}$.
- b. (3 marks) Determine \vec{v} .

Question 8. Given \mathscr{E} : x - 2y = 3 and P = (-1, 1).

- a. (5 marks) Find the closest point on \mathscr{E} from P.
- b. (2 marks) Find the shortest distance from P to \mathscr{E} .

Question 9. Given $\mathscr{E}: x-2y=3 \text{ and } P=(-1, 1, -1).$

- a. (2 marks) Find the equation of a line orthogonal to \mathscr{E} that passes through P.
- b. (2 marks) Find the closest point on \mathscr{E} from P.
- c. (2 marks) Find the shortest distance from P to \mathscr{E} .

Bonus Question. (5 marks)

Given

$$A = \begin{bmatrix} 10 & 1 & 1 & 1 & 9 & 3 & 4 & 1 & 0 & 9 \\ 0 & 9 & 1 & 1 & 4 & 9 & 2 & 7 & 7 & 9 \\ 0 & 0 & 8 & 1 & 1 & 4 & 9 & 2 & 7 & 7 & 9 \\ 0 & 0 & 0 & 7 & 1 & 1 & 4 & 9 & 2 & 7 & 7 \\ 0 & 0 & 0 & 0 & 6 & 1 & 1 & 4 & 9 & 2 & 7 \\ 0 & 0 & 0 & 0 & 0 & 5 & 1 & 1 & 4 & 9 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

determine

adj(adj(A))