Name:

Test 3

This test is graded out of 38 marks. No books, notes, graphing calculators or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. Given the vectors $\vec{u} = (\lambda + 1, 1, \lambda)$, $\vec{v} = (\lambda, 2, 2)$ and $\vec{w} = (1, 1, \lambda)$.

- a. (3 marks) For which value(s) of λ if any, are the vectors \vec{u}, \vec{v} and \vec{w} linearly independent.
- b. (1 mark) For which value(s) of λ if any, span $(\{\vec{u}, \vec{v}, \vec{w}\}) = \mathbb{R}^3$.
- c. (2 marks) For which value(s) of λ if any, span ($\{\vec{u}, \vec{v}, \vec{w}\}$) is a plane through the origin.
- d. (2 marks) For which value(s) of λ if any, span ($\{\vec{u}, \vec{v}, \vec{w}\}$) is a line through the origin.
- e. (3 marks) For which value(s) of λ if any, the vectors \vec{u}, \vec{v} and \vec{w} generate a parallelpiped of volume 2016.

Question 2. (3 marks) Determine whether the statement is true or false, and justify your answer.

The general solution of the nonhomogeneous linear system Ax = b can be obtained by adding b to the general solution of the homogeneous linear system Ax = 0.

Question 3. (6 marks) Given the lines: \mathscr{L}_1 : $\vec{x} = (1,2,0) + t(-1,0,1)$, $t \in \mathbb{R}$ and \mathscr{L}_2 : $\vec{x} = (1,3,-1) + s(2,1,0)$, $s \in \mathbb{R}$. Find the shortest distance between \mathscr{L}_1 and \mathscr{L}_2 .

Question 4. (4 marks) Determine whether

$$W = \{ f : \mathbb{R} \to \mathbb{R} \mid f(-x) = -f(x) \}$$

is a subspace of the vector space of real functions.

Question 5. (2 marks) Determine whether the following is a vector space: $V = \{A \mid A \in \mathcal{M}_{2 \times 2} \text{ and } A^T = A\}$ with the following operations:

A + B = AB and kA = kA

That is, vector addition is matrix multiplication and scalar multiplication is the regular scalar multiplication. Justify.

Question 6. Given the set

 $S = \left\{1 + x + x^2, 1 + x^3\right\}$

- a. (2 marks) Determine whether S is linearly independent.
- b. (4 marks) Find a new set S' that contains the elements of S and is a basis for \mathcal{P}_3 . Show that S' is a basis.
- c. (2 marks) Express $p(x) = x + x^2 x^3$ relative to the basis S'.

Question 7. Given the set

$$S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

- a. (4 marks) Determine whether S is a basis for the vector space of 2×2 upper triangular matrices with the usual matrix addition and scalar multiplication.
- b. (1 mark) Determine the dimension of the vectors space of 2×2 upper triangular matrices with the usual matrix addition and scalar multiplication.

Bonus Question. (5 marks) Prove: A subspace of a finite-dimensional vector space is finite-dimensinal.