Name: Y. Lamontagne

Quiz 8

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §3.2 #15 (3 marks) Suppose that a vector \vec{a} in the xy-plane has a length of 9 units and points in a direction that is 120° counterclockwise from the positive x-axis, and a vector \vec{b} in that plane has a length of 5 units and points in the positive y-direction. Find $\vec{a} \cdot \vec{b}$.

Question 2. §3.3 #33 (4 marks) Using projections find the distance between the point and the plane. (3, 1, -2); x + 2y - 2z = 4

distance =
$$\|proj_{\vec{n}} P_{\vec{n}}^{\vec{n}}\|$$

= $\|\frac{5}{9}(1,2,-2)\| = \frac{5}{9}\sqrt{1+4+4} = \frac{5\sqrt{9}}{9} = \frac{5\cdot 3}{9} = \frac{5}{3}$

Question 3. #4.4.9 (3 marks) Determine the point of intersections (if any) for the pair of lines. $\vec{x} = (3,4,5) + t(1,1,1)$, $t \in \mathbb{R}$ and $\vec{x} = (2,4,1) + s(2,3,-2)$, $s \in \mathbb{R}$