Name: Y. Lamon togne

Quiz 9

This quiz is graded out of 10 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.

Question 1. §3.4 #23

- a. (3 marks) Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors in \mathbb{R}^3 that are othogonal to $\vec{a} = (1, 1, 1)$ and $\vec{b} = (-2, 3, 0)$.

b. (2 marks) What kind of geometric object is the solution space?
a) Let
$$\vec{v} = (x, y, z) \in \vec{R}^3$$
, $\vec{v} \perp \vec{\alpha} \iff \vec{v} \cdot \vec{\alpha} = 0 \iff (x, y, z) \cdot (1, 1, 1) = 0$ (2) $\vec{v} \perp \vec{b} \iff \vec{v} \cdot \vec{b} = 0 \iff (x, y, z) \cdot (-2, 3, 0) = 0$ (2)

$$\begin{bmatrix} 1 & 1 & 0 \\ -2 & 3 & 0 & 0 \end{bmatrix} \sim 2R_1 + R_2 \rightarrow R_2 \begin{bmatrix} 0 & 5 & 2 & 0 \\ 0 & 5 & 2 & 0 \end{bmatrix} \sim \frac{1}{5}R_2 \rightarrow R_2 \begin{bmatrix} 0 & 1 & 26 & 0 \\ 0 & 5 & 2 & 0 \end{bmatrix} \sim \frac{3}{5}R_3 \rightarrow R_3 \begin{bmatrix} 0 & 3/7 & 0 \\ 0 & 3/7 & 0 \end{bmatrix}$$

b) The solution set is a line Since it is all multiples of a vector (the direction vector 可。(音声,1)),

~ -R+R-7R, [1 0 3/5 0] Let z=t where tER x = - = t y==きt · (x, y, z) = t(-3, -2,1)

Question 2. §3.5 #35 (5 marks) Show that if \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^3 , no two of which are collinear, then $\vec{u} \times (\vec{v} \times \vec{w})$ lies in the plane determined by \vec{v} and \vec{w} .

$$\vec{u} \times (\vec{v} \times \vec{w})$$
 lies on the plane determined by \vec{v} and \vec{w} iff $\vec{u} \times (\vec{v} \times \vec{w}) \perp \vec{n}$ iff $\vec{n} \cdot (\vec{u} \times (\vec{v} \times \vec{w})) = 0$

$$\vec{n} \cdot (\vec{u} \times (\vec{v} \times \vec{u}))$$

= $\vec{n} \cdot (\vec{u} \times \vec{n})$

= $|\vec{n}_1| |\vec{n}_2| |\vec{n}_3|$

= $|\vec{n}_1| |\vec{n}_2| |\vec{n}_3|$

= $|\vec{n}_1| |\vec{n}_2| |\vec{n}_3|$

= 0 gince $R_1 = R_3$

• $\vec{u} \times (\vec{v} \times \vec{u})$ lies on the plane generated by \vec{v} and \vec{u} .