Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S2: Winter 2018
Name:
Quiz 8
This quiz is graded out of 8 marks. No books, calculators, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work. If you need more space for your answer use the back of the page.
Question 1. §3.1 #27 Only use vectors to solve the following. Let P be the point $(1,3,7)$. If the point $(4,0,-6)$ is the midpoint of the lin segment connecting P and Q , what is Q ?

Question 2. §3.2 #13

Suppose that a vector \vec{a} in the xy-plane has a length of 9 units and points in a direction that is 120° counterclockwise from the positive x-axis, and a vector \vec{b} in that plane has a length of 5 units and points in the positive y-direction. Find $\vec{a} \cdot \vec{b}$.