
Dawson College: Linear Algebra: 201-NYC-05-S02: Winter 2018

Test 2
This test is graded out of 50 marks. No books, notes, watches or cell phones are allowed. You are only permitted to use the Sharp EL-531
calculator. Give the work in full unless otherwise stated, reduce each answer to its simplest exact form. Write and arrange your exercise in a
legible and orderly manner. If you need more space for your answer use the back of the page.

Question 1. (2 marks) After years of studying mathematics ____________________ (<- write your name) defined a vector product in R3 which
has the same magnitude as the cross product but the direction of the product is given by the left-hand rule (defined the same way as the right-hand
rule but using the left-hand). The name of the product is the happy product denoted by and defined as

~u ~v = (u1, u2, u3) (v1, v2, v3) = (<- write the correct formula for the happy product)

Draw a sketch illustrating the left-hand rule and the happy product of two vectors.

Question 2.1 (5 marks) Gandalf the Grey started in the Forest of Mirkwood at a point with coordinates (3, 3) and arrived in the Iron Hills at the
point with coordinates (5, 8). If he began walking in the direction of the vector~v = 4~i+2~j and changes direction only once, when he turns at a
right angle, what are the coordinates of the point where he makes the turn.
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Question 3.2 (5 marks) Given the lines:

L1 : (x,y,z) = (1,2,−2) + t1(1,2,1)
L2 : (x,y,z) = (2,1,3) + t2(1,2,3)
L3 : (x,y,z) = (1,1,1) + t3(2,7,3) where t1, t2, t3 ∈ R.

which are all skew line to each other. Find the equation of the line which is parallel to L3 and which intersects both L1 and L2.
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Question 4. (5 marks) Determine whether the two lines intersect, are parallel or are skew lines. Find the shortest distance between the lines using
projections.

L1 :


x = 3t

y =−1+2t

z = 1+2t
and L2 :


x = 1−6t

y =−4t

z = 2−4t



Question 5. 3 Let~u = (1, 3, 1) and~v = (2, 1, 1).

a. (3 marks) Find an equation of the form ax1 +bx2 + cx3 = d for the plane spanned by~u and~v.

b. (2 marks) Show that the line (x1, x2, x3) = (2, 6, 2)+ t(9, 2, 4) is entirely contained on the plane spanned by~u and~v.

Question 6. 4 Let~u = (2, −1, 1) and~v = (−3, k, k2)

a. (2 marks) Find all values of k for which~u and~v are orthogonal.

b. (1 mark) Find a unit vector that is orthogonal to~u.

c. (4 marks) Find all values of k for which {~u, ~v, ~u×~v} is linearly independent.
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Question 7. 5 Let {~u, ~v, ~w} be a set of linearly independent vectors in R3

a. (3 marks) Simplify~u · [(~v−~u)× (~w−~u)].
b. (2 marks) Prove or disprove: The parallelepiped with sides ~u, ~v and ~w has the same volume as the parallelepiped with sides ~u, ~v−~u and

~w−~u.

Question 8. The number of leading 1’s in a row echelon form of A is called the rank of A. Let V = {M | M ∈Mn×n and rank(M) < n} with
vector addition defined as matrix multiplication and scalar multiplication defined as k ·M = kM+ rI− I.

a. (3 marks) Is the zero vector an element of V ? Justify.

b. (2 marks) Determine whether the following axiom holds: (rs)M = r(sM) where r, s ∈ R and M ∈V .

c. (1 mark) Is V with the given operations a vector space, Justify.
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Question 9. (3 marks) The union of two sets U and W is defined as U
⋃

W = {x | x ∈U or x ∈W}. Prove or disprove: The union of any two
subspaces of a vector space V is a subspace of V .

Question 10. Given W =
{

a+bx+ cx2 +dx3 | a+2b+3c+4d = 0 and b+ c+d = 0
}

a subspace of P3.

a. (4 marks) Find a basis B for W .

b. (1 mark) State the dim(W ) and dim(P3).

c. (2 marks) Express p(x) =−2−3x+4x2− x3 relative to the basis found in part a.

Bonus. (3 marks) Prove the commutativity axiom, assuming the other nine vector space axioms.


