
Question 1.¹ (5 marks) Let $V = \mathbb{R}^2$ and let H be the subset of V of all points in the first and third quadrants that lie between the lines y = 2x and y = x/2. Determine whether H is closed under vector addition and scalar multiplication.

Question 2. (5 marks) Prove: If a nonempty subset W of a vector space V is closed under addition and scalar multiplication, under the inherited operations then W is a vector space.

Question 3. (2 marks) \mathbb{R}^3 has infinitely many subspaces. Do every non-trivial space have infinitely many subspaces?

Question 4. (2 marks) Is \mathbb{R}^2 a subspace of \mathbb{R}^3 ?

Question 5. (2 marks) If A is a subspace of a vector space V, is its complement $A^c = \{\vec{x} \in V \mid \vec{x} \notin A\}$ a subspace of V?