Question 1.¹ (1 mark each) Complete the following sentences with the word must, might or, cannot, as appropriate.

- a. Given the identity: $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} (\vec{u} \cdot \vec{v})\vec{w}$. If $\{\vec{u}, \vec{v}\}$ is linearly independent then $\{\vec{u}, \vec{v}, \vec{u} \times (\vec{v} \times \vec{w})\}$ ------ be linearly independent.
- b. Let \vec{u} and \vec{v} be distinct nonzero vectors in \mathbb{R}^3 . If $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent, then $\vec{u} \cdot (\vec{v} \times \vec{w})$ ______ be equal to $\vec{u} \cdot (\vec{w} \times \vec{v})$.
- c. If Ax = b has two distinct solutions then the columns of A _____ be linearly dependent.
- d. If $\{\vec{a}, 2\vec{a}+3\vec{b}, \vec{a}-3\vec{c}\}$ is linearly independent in a vector space V, then $\{\vec{a}, \vec{b}, \vec{c}\}$ ------ be linearly independent.
- e. If B has no column of zeros, but AB does, then the columns of A _____ be linearly independent.

Question 2.¹ (1 mark) Fill in the correct numerical value. Suppose that $\{(3, -2, 7), (-2, a, b)\}$ is linearly dependent then $a = \dots$ and $b = \dots$

Question 3.¹ (2 marks) Write the definition of *linearly independent*. Be precise!

Question 4.¹ (3 marks each) Determine whether the following statements are true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. If $\{\vec{a}, \vec{b}\}$ and $\{\vec{u}, \vec{v}\}$ are both linearly dependent sets, then either $\{\vec{a}, \vec{u}\}$ or $\{\vec{a}, \vec{v}\}$ must be linearly dependent.

b. Suppose that $\{\vec{a}, \vec{b}\}$ and $\{\vec{u}, \vec{v}\}$ are both linearly independent sets. Then that either $\{\vec{a}, \vec{u}\}$ or $\{\vec{a}, \vec{v}\}$ must be linearly independent.

¹From or modified from John Abbott College.