No books, watches, notes or cell phones are allowed. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (5 marks) Using vectors prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and half as long.

Need to show:
$$\frac{1}{2}BC = M_1M_2$$
 $RHS = M_1M_3$
 $= M_1B + BC + CM_2$
 $= \frac{1}{2}AB + BC + \frac{1}{2}CA$
 $= \frac{1}{2}[AB + CA] + BC$
 $= \frac{1}{2}[CA + AB] + BC$
 $= \frac{1}{2}[CB] + BC = \frac{1}{2}[-BC] + BC = \frac{1}{2}BC = LHS$

Question 3. (5 marks) Prove the parallelogram law for the norm:

$$||\vec{a} + \vec{b}||^2 + ||\vec{a} - \vec{b}||^2 = 2||\vec{a}||^2 + 2||\vec{b}||^2$$

for all vectors in \mathbb{R}^n .

Question 3. Given the line y = x + 2 which is a tangent of the circle with centre C. The vector \vec{v} has initial point C and terminal point B which lies both on the circle and the tangent.

note: A tangent to a circle is perpendicular to the radius at the point at which the tangent and circle intersect.

a. (1 mark) Find the centre C of the circle.

- b. (3 marks) Find the point B.
- d. (1 mark) Find the equation of the circle.

C)
$$(x-h)^{2}+(y-k)^{2}=r^{2}$$

 $(x-4)^{2}+y^{2}=||y||^{2}$
 $(x-4)^{2}+y^{2}=||(-3,3)||^{2}$
 $(x-4)^{2}+y^{2}=(\sqrt{(-3)^{2}+3^{2}})^{2}$
 $(x-4)^{2}+y^{2}=18$

a)
$$\overrightarrow{AC} = \overrightarrow{u}$$
 $\overrightarrow{u} = \overrightarrow{AC}$
 $(10,4) = C - A$
 $(10,4) = C - (-6,-4)$
 $C = (4,0)$

b) $B(x,x+2)$ since

it lies on the line.

 $\overrightarrow{AB} = \overrightarrow{CB} = C$
 $(x,x+2) = (-6,-4)$
 $= (x+6,x+6)$
 $\overrightarrow{CB} = B - C = (x,x+2) - (-6,-4)$
 $= (x+6,x+6)$
 $\overrightarrow{CB} = B - C = (x,x+2) - (4,0)$
 $= (x+6,x+6)$
 $\overrightarrow{CB} = \overrightarrow{CB} = C$
 $(x+6,x+6) \cdot (x-4,x+2)$
 $\overrightarrow{CC} = (x+6,x+6) \cdot (x-4,x+2)$